高级检索

钢结硬质合金与钢连接技术的研究现状

魏炜, 黄智泉, 张海燕, 徐莹, 吴淑菲, 关绍康

魏炜, 黄智泉, 张海燕, 徐莹, 吴淑菲, 关绍康. 钢结硬质合金与钢连接技术的研究现状[J]. 焊接学报, 2024, 45(5): 119-128. DOI: 10.12073/j.hjxb.20230526001
引用本文: 魏炜, 黄智泉, 张海燕, 徐莹, 吴淑菲, 关绍康. 钢结硬质合金与钢连接技术的研究现状[J]. 焊接学报, 2024, 45(5): 119-128. DOI: 10.12073/j.hjxb.20230526001
WEI Wei, HUANG Zhiquan, ZHANG Haiyan, XU Ying, WU Shufei, GUAN Shaokang. Research status on cermet/steel welding and joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 119-128. DOI: 10.12073/j.hjxb.20230526001
Citation: WEI Wei, HUANG Zhiquan, ZHANG Haiyan, XU Ying, WU Shufei, GUAN Shaokang. Research status on cermet/steel welding and joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 119-128. DOI: 10.12073/j.hjxb.20230526001

钢结硬质合金与钢连接技术的研究现状

基金项目: 新型钢结硬质合金耐磨复合材料制备关键技术研发项目(201ZP20220010).
详细信息
    作者简介:

    魏炜,博士研究生,高级工程师;主要研究方向为电弧焊、先进制造;Email: weiw@zrime.com.cn

    通讯作者:

    关绍康,博士研究生导师,教授;Email: Skguan@zzu.edu.cn

  • 中图分类号: TG 444

Research status on cermet/steel welding and joining

  • 摘要:

    钢结硬质合金具有合金钢的优良力学性能和硬质合金的高耐磨性、高硬度的特点,具有良好的性价比,如何将钢结硬质合金与大型耐磨部件金属基体形成牢固的冶金结合,已成为提高设备整体耐磨性和使用寿命的技术关键,通过总结钢结硬质合金与钢的不同冶金结合形式、原理和特点,并概述了近年来国内外学者在此领域所取得的研究成果,具体介绍了镶铸、钎焊、扩散焊、激光焊、电弧焊等连接方法的研究现状,重点总结了这些连接方法的适用范围以及在使用过程中存在的问题,特别是钢结硬质合金与钢基体的界面结合情况进行了统计分析,最后,通过对现有技术的归纳总结,展望了未来实现钢结硬质合金与钢基体良好冶金结合的研究和发展方向.

    Abstract:

    The steel-bonded cemented carbide combines the excellent mechanical properties of alloy steel with the high wear resistance and hardness of cemented carbide, offering a compelling cost-performance ratio. Achieving a strong metallurgical bond between the steel-bonded cemented carbide and the metal substrate of large-scale wear-resistant components has become a key technological challenge in enhancing the overall wear resistance and service life of equipment. This article summarizes the different metallurgical bonding forms, principles, and characteristics of steel-bonded cemented carbide with steel, and provides an overview of the research achievements in this field by scholars at home and abroad in recent years. It specifically introduces the research status of connection methods such as casting-in, brazing, diffusion welding, laser welding, and arc welding, and summarizes the applicability and existing issues of these connection methods in practical usage, with a particular focus on statistical data and analysis of the interface bonding between steel-bonded cemented carbide and the steel substrate. Finally, through summarizing existing technologies, the article outlines future research and development directions for achieving a robust metallurgical bond between steel-bonded cemented carbide and the steel substrate.

  • 搅拌摩擦焊(friction stir welding, FSW)技术在国内轨道交通车辆铝合金车体制造中已有十余年的应用,最初是为了解决铝合金车体焊接的两类关键问题:一是控制薄板焊接的变形,二是减少厚板焊接的层间缺陷[1-3]. 此外,作为一种绿色焊接技术,FSW还具有操作简单、焊接强度高、一致性好等特点,因而其应用范围也越来越广泛[4-6].

    传统的FSW工艺中,通常不会产生焊缝余高,同时为保证焊接质量,主轴往往会提供较大的下压力,致使搅拌头轴肩被压入工件表面,造成焊缝表面低于母材表面的减薄现象[7]. 此外,在下压力控制不当时,FSW工艺也会产生特有的飞边缺陷[8]. 上述情况不仅会使工件整体精度降低,还会在实际生产中带来较大的焊后打磨量工作,特别是在车体侧墙、端墙等对平面度要求较高的部件焊接时,影响生产效率. 沈浩然等人[9]设计出一种静止轴肩的搅拌头,并应用在铝锂合金的搅拌摩擦焊中,实现了无减薄焊接,但是其并没有解决飞边缺陷等问题. 其他研究工作中,也有学者尝试采用增材焊接的方式来解决焊缝减薄的问题,但这些方法一定程度上增加了生产成本,提高了工艺复杂性[10-11].

    文中针对铝合金型材研究了一种无减薄搅拌摩擦焊的工艺,并对搅拌头的结构进行了适当优化. 结果表明,搅拌头轴肩区域采用内凹设计,能够在保证下压量的基础上,改善焊缝区域的材料流动并使材料回填,最终获得无飞边、无减薄的焊接接头,其力学性能表现良好. 同时,结合工业生产中型材组装存在拼接公差的实际情况,研究了接头错边量对焊缝拉伸强度的影响.

    试验采用挤压成形的中空铝合金型材,其材质为6005A-T6,材料成分和力学性能分别执行EN 573-3[12]和EN 755-2[13]标准,抗拉强度为260 MPa. 接头采用对搭接形式,厚度为4 mm,焊接试样长度为800 mm(其中有效焊接长度600 mm),断面尺寸如图1所示,焊接方向平行于挤压方向.

    图  1  铝合金型材的横截面
    Figure  1.  Cross section of aluminum alloy profile

    焊接过程中采用恒位移控制模式,主轴转速和焊接速度分别为950 r/min和300 mm/min. 试验所用搅拌头轴肩直径24 mm,内凹角深度1 mm,锥形搅拌针根部直径为8 mm,针长为5.3 mm,侧面加工有右旋锥螺纹,焊接过程中倾角为2.5°.

    依据国家标准《GB/T 2651-2008焊接接头拉伸试验方法》[14],从垂直于焊缝方向的接头取拉伸试样,同时考虑到型材各处厚度不均匀的结构特点,以最薄处为厚度基准制备标准试样,用于考察型材FSW结构的拉伸性能,引伸计标距定为50 mm. 为考察接头各区显微硬度的分布特征,沿垂直于焊接方向截取接头横截面制备测试试样,经SiC砂纸粗磨、金相砂纸精磨和机械抛光后,对距离焊缝上表面2 mm处各点进行维氏硬度测试.

    试验中将轴向下压量作为变量,以搅拌针针长为基准,将其设定为5.3 ~ 5.7 mm. 图2图3为不同下压量条件下所得高速FSW接头的表面和截面的宏观形貌.

    图  2  焊缝表面形貌
    Figure  2.  Surface morphology of welded joints. (a) press amount 5.3 mm; (b) press amount 5.4 mm; (c) press amount 5.5 mm; (d) press amount 5.6 mm; (e) press amount 5.7 mm
    图  3  焊缝截面形貌
    Figure  3.  Section morphology of welded joints. (a) press amount 5.3 mm; (b) press amount 5.4 mm; (c) press amount 5.5 mm; (d) press amount 5.6 mm; (e) press amount 5.7 mm

    当下压量为5.3 mm时,可以明显看到焊缝中部存在未焊合情况,此时与搅拌针针长相当,由于搅拌头轴肩内凹设计,轴肩与工件表面没有充分摩擦,因此焊缝成形质量较差. 当下压量为5.4 mm时,接头整体呈现焊合状态,但中间存在气孔缺陷,且焊缝前进侧存在较小尺寸的飞边结构,推测其成因是由于轴肩下压仍然不充分,材料高温状态下软化后与轴肩之间存在缝隙,部分材料在搅拌头旋转作用下被带出,形成飞边缺陷. 当下压量为5.5 mm和5.6 mm时,焊缝成形质量较好,达到无需后道打磨工序的状态,两者相比下压量为5.5 mm更优. 当下压量增大到5.7 mm时,焊缝表面和母材表面存在明显高度差,即发生了接头厚度减薄,表明此时搅拌头下压量过大.

    选取下压量为5.5 mm状态下的焊接接头,观测其微观组织形貌,如图4所示. 接头组织呈现出典型搅拌摩擦焊焊缝特征,由焊核区(NZ)、热力影响区(TMAZ)和热影响区(HAZ)三个区域组成,前进侧和后推侧存在不对称的TMAZ和HAZ. 焊缝中心受搅拌头直接作用的NZ呈盆状,上半部分较宽,主要受到轴肩的旋转带动作用;中、下部分较窄,主要受到搅拌针的直接搅拌作用.

    图  4  焊缝组织微观形貌
    Figure  4.  Microstructure of welded joint. (a) the overall microstructure of the joint; (b) base metal; (c) weld-nugget zone; (d) heat-affected zone; (e) thermo-mechanically affected zone

    图4b ~ 4e反映了采用基准工艺参数所得接头的各区晶粒形态. 可以看出,NZ在剧烈塑性变形和高焊接热输入的联合作用下,发生了动态再结晶,形成了细小的等轴晶粒. HAZ没有发生塑性变形,只经历了较低的焊接热输入,晶粒形态与母材相似,只是晶粒发生了一定程度的粗化. TMAZ未受到搅拌头的直接搅拌作用,但在NZ塑性金属粘滞力的带动下发生了拉长弯曲变形,与NZ组织形态差异较大,两者间出现分界面,这是由两侧塑性材料的流动差异造成的.

    选取下压量5.5 mm标准接头制得的拉伸试样,测定其拉伸曲线如图5所示,表现为无明显屈服平台的塑性材料特征,其抗拉强度和屈服强度分别为196.5 MPa和111.0 MPa,根据EN 755-2[13]标准,达到了母材的75%.

    图  5  焊接接头拉伸曲线
    Figure  5.  Tensile curve of welded joint

    改变下压量,分别测得焊接接头抗拉强度和屈服强度,如图6所示. 当下压量为5.3 mm时,根据前述结果,焊缝中部存在未焊合情况,因此其抗拉强度和屈服强度均较低. 当下压量为5.4 ~ 5.7 mm时,抗拉强度和屈服强度无明显变化趋势,表明搅拌摩擦焊工艺良好的稳定性.

    图  6  焊缝抗拉强度和屈服强度
    Figure  6.  Tensile strength and yield strength of welded joints

    无缺陷焊接接头的力学性能取决于显微硬度分布,显微硬度是接头各区强化程度的宏观反映,而可热处理强化铝合金搅拌摩擦焊接头各区的强化机制可能包括固溶强化、沉淀强化、位错强化和细晶强化等.

    不同下压量条件下未经热处理的焊接接头显微硬度分布如图7所示,其中各接头的软化区宽度基本相同,NZ和TMAZ的显微硬度变化不显著,焊缝两侧硬度极小值均出现在HAZ,且数值非常接近,这与传统搅拌摩擦焊接头的硬度值空间分布一致[15]. 随着下压量的增大,软化区宽度出现轻微增加的情况,最小硬度值对应的位置向外偏移,NZ的显微硬度在下压量为5.6 mm时达到极小值. 总的来看,焊核区硬度约为60 HV,较母材下降25 ~ 30 HV.

    图  7  焊缝显微硬度
    Figure  7.  Microhardness of welded joints

    与熔化焊相比,FSW对工装要求较高. 一方面是由于FSW实施过程中,工件要承受较大的轴向下压力和径向扭转载荷;另一方面,需要保证型材之间良好的接触配合,以保证材料在搅拌头作用下顺利流动. 对于车体双层中空型材,由于其采用铝合金挤压工艺,除了本身断面上的制造误差,长度方向上的扭拧等都会影响装配精度.

    为了检验型材接头拼接公差对焊缝力学性能的影响,在焊缝中心一侧的工件表面进行机加工,从而以人为的方式预置错边量,加工宽度大于静轴肩半径. 在这里定义接头错边量Δt,Δt > 0表示前进侧表面比后退侧高,Δt < 0表示前进侧表面比后退侧低. 试验中搅拌头下压量为5.5 mm(以未进行机加工的较高一侧上表面为基准).

    图8为不同接头错边量条件下所得高速FSW接头的表面形貌. 当前进侧表面比后退侧高时,此时在搅拌头和轴肩作用下,部分金属在轴肩和后退侧之间的缝隙被压出,压出后不再参与塑性层的流动,因而会在后退侧产生形成飞边缺陷的趋势. 特别是缝隙较大时,如图8b所示,形成明显的飞边缺陷. 当前进侧表面比后退侧低时,此时在搅拌头和轴肩作用下,部分金属同样在轴肩和后退侧之间的缝隙被压出,压出后仍然会参与塑性层的流动. 然而,由于此时前进侧温度较低,特别是当温度差异较大时,被压出的金属一部分接触前进侧表面预冷凝固,从而造成流动性变差,影响焊缝成形质量,如图8d所示.

    图  8  焊缝表面形貌
    Figure  8.  Surface morphology of welded joints. (a) Δt = 0.5 mm; (b) Δt = 1 mm; (c) Δt = −0.5 mm; (d) Δt = −1 mm

    分别测得不同接头错边量条件下所得焊接接头抗拉强度和屈服强度,如图9所示. 当错边量Δt绝对值小于0.5 mm时,其抗拉强度和屈服强度下降范围可控制在10%以内. 当错边量Δt绝对值大于0.5 mm时,其抗拉强度和屈服强度下降显著. 因此,型材在焊接过程中应尽可能将装配错边量控制在0.5mm以内.

    图  9  不同错边量状态下焊缝抗拉强度和屈服强度
    Figure  9.  Tensile strength and yield strength of welded joints under different tolerances

    (1)研究中采用轴肩内凹设计的搅拌头,无需其他特殊工艺,即可获得无减薄的型材FSW接头,且下压量5.5 mm时焊缝成形质量最好;

    (2)无减薄工艺条件下,所得FSW接头抗拉强度为196.5 MPa,达到母材的75%,且在下压量5.4 ~ 5.7 mm时保持了较好的一致性;

    (3)无减薄工艺条件下,铝合金型材接头拼接公差在±0.5 mm以内时,接头强度下降可控制在10%以内.

  • 图  1   TiC钢结硬质合金与钢钎焊界面的微观结构

    Figure  1.   Microstructure of the TiC and steel joint

    图  2   TiC钢结硬质合金与304不锈钢扩散焊界面显微组织

    Figure  2.   Microstructure of diffusion welding interface between TiC steel bonded carbide and 304 stainless steel. (a) combined with the SEM morphology of the interface; (b) element distribution; (c) enlarging area of point E in Fig. 2 (a)

    图  3   硬质合金/焊缝界面显微组织

    Figure  3.   Microstructure at cemented carbide/welded seam interface. (a) distribution of η phase; (b) microstructure of the interface

    图  4   界面显微组织形貌

    Figure  4.   Microstructure of the interface. (a) direct arc welding interface at low magnification; (b) direct arc welding interface at high magnification; (c) indirect arc welding interface at low magnification; (d) indirect arc welding interface at high magnification

    表  1   钢结硬质合金与钢钎焊时常用钎料、接头结构、抗剪强度和相组成

    Table  1   brazing filler metals, joint structures, shear strengths, and phase for steel-bonded carbide and steel brazing

    材料钎料接头结构抗剪强度RτMPa相组成
    Cu基钎料Cu-Nb-Ti[33]TiC金属陶瓷/Ti-Nb-Cu/304SS92.5TiC + (βTi,Nb) + 残余Nb、Cu + Cu(s.s)
    Cu[34]Ti(C,N)金属陶瓷/Cu-Ni/Cu/CuMnZn/钢195.3(Fe,Ni) + Cu + (Cu,Ni) + Ti(C,N) + CuMnZn
    Cu-Mn-Co[35]TiC-NiCr金属陶瓷/CuMnCo/1Cr13274
    Ag基钎料Ag-Cu-Zn[36]TiC金属陶瓷/Ag-Cu-Zn/钢105Cu(s.s) + Ni3ZnC0.7/Cu(s.s) + Ni3ZnC0.7 +
    Ag (s.s)/Cu(s.s) + Ni3ZnC0.7
    Ag-54Cu-33Zn[37]TiC金属陶瓷/Ag-54Cu-33Zn/钢95.7(Cu、Ni)、Ag(s.s) + Cu(s.s),(Cu,Ni),
    (Cu,Ni) + (Fe,Ni)
    Ni基钎料AgCuZnNi[38]Ti(C,N)金属陶瓷/AgCuZnNi/3Cr13154Ag(s.s) + Cu(s.s)
    AgCuZnNi[39]Ti(C,N)金属陶瓷/AgCuZnNi/铜176.5Ag-29Cu-26Zn-2Ni
    下载: 导出CSV
  • [1] 中华人民共和国国家质量监督检验检疫总局. 钢结硬质合金材料毛坯:GB/T 3879-2008[S]. 株洲: 株洲硬质合金集团有限公司, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Material blanks of steel bonded carbide: GB/T 3879-2008 [S]. Zhuzhou: Zhuzhou cemented carbide group Co.,LTD., 2008.

    [2] 韩凤麟. 粉末冶金技术手册(精)[M]. 北京: 化学工业出版社, 2009.

    Han Fenglin. Powder metallurgy technical manual (Exquisite) [M]. Beijing: Chemical Industry Press, 2009.

    [3] 中华人民共和国国家质量监督检验检疫总局. 粉末冶金术语:GB/T 3500-2008[S]. 长沙: 中南大学粉未冶金研究院, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Powder metallurgy-Vocabulary. GB/T 3500-2008[S]. Changsha: Powder Metallurgy Research Institute, 2008.

    [4] 马一川, 张雪峰, 陈敏, 等. Mo2C/WC对金属陶瓷组织和性能的影响[J]. 钢铁钒钛, 2020, 41(2): 42 − 47.

    Ma Yichuan, Zhang Xuefeng, Chen Min, et al. Effect of Mo2C/WC ratio on microstructure and properties of cermet[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 42 − 47.

    [5]

    Zhang Jianfeng, Wang Lianjun, Jiang Wan, et al. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering[J]. Materials Science and Engineering:A, 2008, 487(7): 137 − 143.

    [6]

    Zou Bin, Ji Wenbin, Huang Chuanzhen, et al. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2-TiC + Al2O3 composite ceramic cutting tool materials[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2014, 585(2): 192 − 202.

    [7]

    Xue Jiaxiang, Liu Jixuan, Zhang Guojun, et al. Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 ℃ for inert matrix fuels[J]. Scripta Materialia, 2016, 114(3): 5 − 8.

    [8]

    Sribalaji M, Mukherjee B, Bakshi S R, et al. In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite[J]. Composites Part B:Engineering, 2017, 123(8): 227 − 240.

    [9]

    Liu Shoufa Liu, Dancheng. Effect of hard phase content on the mechanical properties of TiC-316 L stainless steel cermets[J]. International Journal of Refractory Metals & Hard Materials, 2019, 82: 273 − 278.

    [10]

    Guan Yiqi, Peng Yingbiao, Liu Yuling, et al. Effect of secondary carbides on core-rim structure and their diffusion behavior in TiC-Ni-based cermets[J]. Journal of Phase Equilibria and Diffusion, 2022, 43(2): 164 − 175. doi: 10.1007/s11669-022-00948-7

    [11]

    Fernandes C M, Senos A M R. Cemented carbide phase diagrams: a review[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(4): 405 − 418.

    [12] Kueba J, 萧玉麟. 钢结硬质合金适用性的表征[J]. 国外难熔金属与硬质材料, 1995, 11(2): 21 − 27.

    Kueba J, Xiao Yulin. Characterization of applicability of steel-bonded cemented carbide[J]. International Journal of Refractory Metals & Hard Materials, 1995, 11(2): 21 − 27.

    [13] 刘跃, 张国赏, 魏世忠. 铁基堆焊耐磨合金的研究现状[J]. 电焊机, 2012, 42(5): 58 − 61. doi: 10.3969/j.issn.1001-2303.2012.05.014

    Liu Yue, Zhang Guoshang, Wei Shizhong. Present situation in research on iron-based hardfacing alloy[J]. Electric Welding Machine, 2012, 42(5): 58 − 61. doi: 10.3969/j.issn.1001-2303.2012.05.014

    [14] 陈国庆, 张秉刚, 吴振中, 等. 硬质合金与钢焊接技术的研究现状[J]. 硬质合金, 2012, 29(6): 387 − 392. doi: 10.3969/j.issn.1003-7292.2012.06.008

    Chen Guoqing, Zhang Binggang, Wu Zhenzhong, et al. Research status on welding of cemented carbide to steel[J]. Cemented Carbide, 2012, 29(6): 387 − 392. doi: 10.3969/j.issn.1003-7292.2012.06.008

    [15] 樊少忠, 钟黎声, 许云华, 等. 灰口铸铁表面TiC致密颗粒层的微观组织与原位形成机理分析[J]. 焊接学报, 2017, 38(9): 96 − 102.

    Fan Shaozhong, Zhong Lisheng, Xu Yunhua, et al. Microstructure of TiC dense particles layer and in situ formation mechanism on gray cast iron surface[J]. Transactions of the China Welding Institution, 2017, 38(9): 96 − 102.

    [16]

    Li Yajiang, Zou Zengda, Holly Xiao, et al. Microstructure and XRD analysis in the brazing zone of a new WC-TiC-Co hard alloy[J]. Materials Research Bulletin, 2002, 37(5): 941 − 948. doi: 10.1016/S0025-5408(02)00694-3

    [17]

    Xu Peiquan, Yao Shun, Yang Dexin, et al. Study on the formation of η phase during TIG welding[J]. Journal of Shanghai Jiaotong University Science, 2004, 9(3): 6 − 10.

    [18] 赵秀娟. 硬质合金与钢熔焊界面组织与性能[D]. 大连: 大连交通大学, 2004.

    Zhao Xiujuan. Microstructures and properties of fusion welding interface between cemented carbides and steels[D]. Dalian: Dalian Jiaotong University, 2004.

    [19] 宋以国, 赵秀娟, 杨德新, 等. YG30硬质合金与45钢TIG焊界面组织的分析[J]. 硬质合金, 2005, 22(2): 69 − 73.

    Song Yiguo, Zhao Xiujuan, Yang Dexin, et al. Microstructureanalysis of the TIG interface of YG30 cemented carbide and steel45 [J]. Cemented Carbide, 2005, 22(2): 69 − 73.

    [20]

    Zhou G T, Huang T, Guo Y L, et al. Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field[J]. China Welding, 2023, 32(4): 38 − 48.

    [21] 林伟伟. YG20/42CrMo扩散焊接层的微结构及性能研究[D]. 株洲: 湖南工业大学, 2022.

    Lin Weiwei. Microstructure and properties of YG20/42CrMo diffusion welding layer[D]. Zhuzhou: Hunan University of Technology, 2022.

    [22] 中华人民共和国国家质量监督检验检疫总局.铸造术语: GB/T 5611-2017 [S]. 沈阳: 中国机械科学总院集团沈阳铸造研究所有限公司, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Foundry terminology: GB/T5611-2017 [S]. Shenyang: China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd., 2017.

    [23] 苏春霞, 徐相斌. 辊压机冷镶柱钉辊套的失效分析[J]. 新世纪水泥导报, 2018, 24(1): 45 − 46.

    Su Chunxia, Xu Xiangbin. Failure analysis of roller sleeve for cold studded roller press[J]. Cement Guide for New Epoch, 2018, 24(1): 45 − 46.

    [24] 张长涛, 谢敬佩, 王文焱, 等. 铸造工艺对超高锰钢镶铸复合材料锤头的组织及结合的影响[J]. 热加工工艺, 2010, 39(5): 42 − 44,47. doi: 10.3969/j.issn.1001-3814.2010.05.013

    Zhang Changtao, Xie Jingpei, Wang Wenyan, et al. Effects of casting technique on microstructure and connection mechanism of super-high manganese steel composite hammer prepared by casting process[J]. Hot Working Technology, 2010, 39(5): 42 − 44,47. doi: 10.3969/j.issn.1001-3814.2010.05.013

    [25] 史秋月, 曾大新, 颜士杰. 固-液复合Cr12MoV钢-球墨铸铁结合界面研究[J]. 铸造, 2018, 67(6): 483 − 486,491.

    Shi Qiuyue, Zen Daxin, Yan Shijie. Research on bonding interface of liquid-solid composite casting of Cr12MoV steel-ductile iron[J]. China Foundry, 2018, 67(6): 483 − 486,491.

    [26] 全国焊接标准化技术委员会. 钎焊术语: GB/T33148-2016[S]. 哈尔滨: 中国机械科学总院集团哈尔滨焊接研究所有限公司, 2016.

    Soldering and brazing terms. Brazing terminology: GB/T33148-2016[S]. Harbin: Harbin Welding Institute Limited Company, 2016.

    [27]

    Li Jia, Sheng Guangmin, Huang Li. Additional active metal Nb in Cu–Ni system filler metal for brazing of TiC cermet/steel[J]. Materials Letters, 2015, 156(11): 10 − 13.

    [28] 宫红亮. 钢结硬质合金TM60与钢火焰钎焊工艺的研究[D]. 郑州: 郑州大学, 2013.

    Gong Hongliang. Study on brazing process of steel-bonded carbide TM60 and steel flame brazing[D]. Zhengzhou: Zhengzhou University, 2013.

    [29]

    Feng Jicai, Zhang Lixia. Interface structure and mechanical properties of the brazed joint of TiC cermet and steel[J]. Journal of the European Ceramic Society, 2006, 26(7): 1287 − 1292. doi: 10.1016/j.jeurceramsoc.2005.01.043

    [30]

    Wang Y, Zheng X Y, Wei Y R, et al. Microstructure evolution and mechanical properties of the TiB2-TiC-SiC composite ceramic and Nb brazed joint[J]. Journal of Manufacturing Processes, 2023, 92: 179 − 188.

    [31]

    He Hu, Du Xueming, Yao Zhenhua, et al. Microstructure ofTi(C, N)-based cermet and 45 steel joint brazed with multilayered composite filler[J]. Materials For Mechanical Engineering, 2018, 42(10) : 18 − 23.

    [32]

    Zhang Lixia, Feng Jicai. Effect of reaction layers on the residual stress of the brazed TiC cermets/steel joints[J]. Journal of Materials Science & Technology, 2009, 25(2): 203 − 207.

    [33]

    Li Jia, Sheng Guangmin, Huang Li, et al. Ti-Nb-Cu stress buffer layer for TiC cermet/304 stainless steel diffusion bonding[J]. Rare Metal Materials & Engineering, 2016, 45(3): 555 − 560.

    [34] 朱林正, 郑勇, 黄琦, 等. Ti(C, N)基金属陶瓷与45钢钎焊接头显微组织和剪切强度的研究[J]. 硬质合金, 2015, 32(5): 294 − 299.

    Zhu Linzheng, Zheng Yong, Huang Qi, et al. Study on microstructure and shear strength of the joints of Ti(C, N)-based cermet to 45 steel[J]. Cemented Carbide, 2015, 32(5): 294 − 299.

    [35] 王全兆, 刘越, 张玉政, 等. TiC/NiCr金属陶瓷与1Cr13不锈钢的真空钎焊[J]. 焊接学报, 2006, 27(8): 43 − 46. doi: 10.3321/j.issn:0253-360X.2006.08.012

    Wang Quanzhao, Liu Yue, Zhang Yuzheng, et al. Vacuum brazing between TiC/NiCr cermets and 1Cr13 stainless steel[J]. Transactions of the China Welding Institution, 2006, 27(8): 43 − 46. doi: 10.3321/j.issn:0253-360X.2006.08.012

    [36]

    Zhang L X, Feng J C, Liu H B. High frequency induction brazing of TiC cermets to steel with Ag–Cu–Zn foil[J]. Metal Science Journal, 2008, 24(5): 623 − 626.

    [37]

    Zhang L, Feng J, Zhang B, et al. Ag–Cu–Zn alloy for brazing TiC cermet/steel[J]. Materials Letters, 2005, 59(1): 110 − 113. doi: 10.1016/j.matlet.2004.08.029

    [38] 陈洪生, 冯可芹, 熊计, 等. Ti(C, N)基金属陶瓷与3Cr13不锈钢的真空钎焊[J]. 四川大学学报(工程科学版), 2012, 44(S1): 273 − 277.

    Chen Hongsheng, Feng Keqin, Xiong Ji, et al. Vacuum brazing of Ti(C, N)-based cermets and 3Cr13 stainless steel[J]. Advanced Engineering Sciences, 2012, 44(S1): 273 − 277.

    [39]

    Ye Dameng, Xiong Weihao, Zhang Xiuhai, et al. Microstructure and shear strength of the brazed joint of Ti(C, N)-based cermet to steel[J]. Rare Metals, 2010(1): 72 − 77.

    [40]

    Jing Y, Yang Q Q, Xiong W H, et al. Microstructure and shear strength of brazed joints between Ti(C,N)-based cermet and steel with CuAgTi filler metal[J]. Journal of Alloys and Compounds, 2016, 682: 525 − 530. doi: 10.1016/j.jallcom.2016.04.298

    [41] 全国焊接标准化技术委员会. 焊接术语: GB/T 3375-1994[S]. 哈尔滨: 中国机械科学总院集团哈尔滨焊接研究所有限公司, 1994.

    Soldering and brazing terms. Welding terminology: GB/T 3375-1994[S]. Harbin: Harbin Welding Institute Limited Company, 1994.

    [42] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程 2017, 45(3): 54 − 59.

    Li Jia, Sheng Guangmin, Huang Li. Impulse Stainless Pressuring Diffusion Bonding of TiC Cermet to Steel Using Ti/Nb Interlaye[J]. Journal of Materials Engineering, 2017, 45(3): 54 − 59.

    [43] 张誉喾, 马志鹏, 张旭昀. 硬质合金与钢异种金属焊接工艺的研究现状[J]. 化工机械, 2016, 43(4): 441 − 445.

    Zhang Yuku, Ma Zhipeng, Zhang Xuyun. The research status of welding procedure for cemented carbide and steel dissimilar[J]. Chemical Engineering & Machinery, 2016, 43(4): 441 − 445.

    [44] 李淳, 郑祖金, 亓钧雷, 等. AgCu + SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响[J]. 焊接学报, 2019, 40(12): 11 − 16.

    Li Chun, Zheng Zujin, Qi Junlei, et al. The effect of SiC content in AgCu + SiC composite solder on the microstructure and properties of Al2O3 / TC4 joints was investigated[J]. Transactions of the China Welding Institution, 2019, 40(12): 11 − 16.

    [45]

    Cao J, Song X G, Wu L Z, et al. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet[J]. Thin Solid Films, 2012, 520(9): 3528 − 3531. doi: 10.1016/j.tsf.2012.01.001

    [46]

    Hattali M L, Mesrati N, Tréheux D. Electric charge trapping, residual stresses and properties of ceramics after metal/ceramics bonding[J]. Journal of the European Ceramic Society, 2012, 32(4): 717 − 725. doi: 10.1016/j.jeurceramsoc.2011.10.025

    [47]

    Hattali M L, Valette S, Ropital F, et al. Study of SiC-nickel alloy bonding for high temperature applications[J]. Journal of the European Ceramic Society, 2009, 29(4): 813 − 819. doi: 10.1016/j.jeurceramsoc.2008.06.035

    [48]

    Cao J, Song X G, Li C, et al. Brazing ZrO2 ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties[J]. Materials Characterization, 2013, 81(7): 85 − 91.

    [49]

    Jia L, Guangmin S. Diffusion bonding of TiC cermet to stainless steel using impulse pressuring with Ti-Nb interlayer[J]. Rare Metal Materials & Engineering, 2017, 46(4): 882 − 887.

    [50] 匡泓锦. 液-固扩散焊复合连接Ti(C, N)与40Cr[D]. 镇江: 江苏科技大学, 2014.,

    Kuang Hongjin. The research on technology of liquid phase diffusion welding with pulse current auxiliary of Ti(C, N)/40Cr[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.

    [51] 吴铭方, 匡泓锦, 王斐, 等. 液-固扩散焊复合连接Ti(C, N)与40Cr的界面行为与接头强度[J]. 焊接学报, 2014, 35(5): 5 − 8.

    Wu Mingfang, Kuang Hongjin, Wang Fei, et al. Interfacial behavior and joint strength of Ti(C, N) and 40Cr joints obtained by liquid-solid diffusion hybrid bonding method[J]. Transactions of the China Welding Institution, 2014, 35(5): 5 − 8.

    [52] 黄宇. 硬质合金YG8与D6A高强度钢激光焊接行为研究[D]. 长沙: 湖南大学, 2016.

    Huang Yu. Study on laser welding behavior of cemented carbide YG8 and D6A high strength steel[D]. Changsha: Hunan University, 2016.

    [53]

    Pardal G, Meco S, Ganguly S, et al. Dissimilar metal laser spot joining of steel to aluminium in conduction mode[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 365 − 373.

    [54]

    Himanshu S Maurya, Lauri Kollo, Marek Tarraste. Effect of the laser processing parameters on the selective laser melting of TiC–Fe-based cermets[J]. Journal of Manufacturing and Materials Processing, 2022(6): 35.

    [55] 曹晓莲, 徐培全, 曹卓玥, 等. YG20/45#钢激光焊焊缝组织与界面元素扩散研究[J]. 中国激光, 2015, 42(3): 78 − 84.

    Cao Xiaolian, Xu Peiquan, Cao Zhuoyue, et al. Research on microstructure and element diffusion in YG20/45# steel laser welds[J]. Chinese Journal of Lasers, 2015, 42(3): 78 − 84.

    [56] 陈刚, 邓人钦, 薛伟, 等. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 249 − 257.

    Chen Gang, Deng Renqin, Xue Wei, et al. Research progress of welding between cemented carbide and steel[J]. Materials Reports, 2022, 36(22): 249 − 257.

    [57] 王悦悦. 中间层厚度对硬质合金/不锈钢激光焊接头组织性能的影响[D]. 上海: 上海工程技术大学, 2017.

    Wang Yueyue. Effect of interlayer thickness on microstructure and properties of cemented carbide/stainless steel as-welded joints by laser welding[D]. Shanghai: Shanghai University Of Engineering Science, 2017.

    [58] 张一鸣. 过渡层对硬质合金与45钢激光焊的影响研究[D]. 大连: 大连交通大学, 2019.

    Zhang Yiming. Study on the effect of transition layer on laser welding of cemented carbide and 45 steel[D]. Dalian: Dalian Jiaotong University, 2019.

    [59] 杜则裕. 焊接冶金学: 基本原理[M]. 北京: 机械工业出版社, 2018.

    Du Zeyu. Welding metallurgy: basic principles[M]. Beijing: China Machine Press, 2018.

    [60] 何旭初, 宾建林. TiC-HMS一种可用普通电焊焊接的金属陶瓷超级耐磨材料[J]. 湖南冶金, 2001(6): 46.

    He Xuchu, Bin Jianlin. TiC-HMS A kind of metal ceramic super wear-resistant material which can be welded by ordinary electric welding. [J]. Hunan Metallurgy, 2001(6): 46.

    [61] 马丁. 硬质合金与钢MIG焊组织及性能研究[D]. 上海: 上海工程技术大学, 2014.

    Ma Ding. Study on microstructure and property of MIG welds between cemented carbide and steel[D]. Shanghai: Shanghai University of Engineering Science, 2014.

    [62] 赵秀娟, 杨德新. 硬质合金YG30/45钢TIG焊连接的研究[J]. 新技术新工艺, 2004(3): 34 − 35. doi: 10.3969/j.issn.1003-5311.2004.03.016

    Zhao Xiujuan, Yang Dexin. Welding of hard alloy YG30 and steel 45 via TIG[J]. New Technology & New Process, 2004(3): 34 − 35. doi: 10.3969/j.issn.1003-5311.2004.03.016

    [63]

    García R, López V H, Bedolla E, et al. MIG welding process with indirect electric arc[J]. Journal of Materials Science Letters, 2002, 21(24): 1965 − 1967

    [64]

    García R, López V H. A comparative study of the MIG welding of Al/TiC composites using direct and indirect electric arc processes[J]. Journal of Materials Science, 2003, 38(12): 2771 − 2779.

    [65] 孔宪武. 复合铲刃, 江苏: CN2310095 [P]. 1999-03-10.

    Kong Xianwu. Composite blade, Jiangsu: CN2310095 [P]. 1999-03-10.

    [66] 李石林, 谢裕安. 电焊硬质合金刀齿破岩滚刀──当前最耐磨的新材质滚刀[J]. 水文地质工程地质, 1994(3): 58 − 60.

    Li Shilin, Xie Yu'an. Welded carbide cutter teeth rock-breaking hob ──the most wear-resistant new material hob at present[J]. Hydrogeology & Engineering Geology, 1994(3): 58 − 60.

    [67]

    Wei Wei, Zhiquan Huang, Haiyan Zhang, et al.Effect of the welding thermal cycle on the microstructure and mechanical properties of TiC cermet HAZ using the gleeble simulator[J]. Coatings, 2023, 13: 476.

    [68]

    Wei Wei. The influence of different alloyed welding materials on the microstructure and mechanical properties of welded interface in TiC cermet MIG welding bonds[J]. Materials Letters, 2024, 361: 135641

    [69] 叶大萌, 熊惟皓, 徐华安. 金属陶瓷与金属焊接技术的研究现状与展望[J]. 材料导报, 2006, 20(8): 72 − 75. doi: 10.3321/j.issn:1005-023X.2006.08.021

    Ye Dameng, Xiong Weihao, Xu Huaan. Current status and development of welding technique of cermet/metal[J]. Materials Reports, 2006, 20(8): 72 − 75. doi: 10.3321/j.issn:1005-023X.2006.08.021

    [70]

    Gao Jubin, Wang Yangwei, Zhang Lingyu, et al. Study on the ballistic performance of ceramic composite armor with different adhesive[J]. Advanced Materials Research, 2010(10): 308 − 313.

    [71]

    Rajiv Asthana, Mrityunjay Singh, Natalia Sobczak. The role of wetting and reactivity in infiltration of ceramic-metal composites[J]. Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings, 2005, 26: 248 − 261

    [72] 张世俊. TiC/TiN钢结硬质合金及其高锰钢颚板镶嵌强化技术的研究[D]. 郑州: 郑州大学, 2015.

    Zhang Shijun. Research of TiC/TiN steel bonded carbide and high manganese steel jaw plate embedded reinforcement technology[D]. Zhengzhou: Zhengzhou University, 2015.

  • 期刊类型引用(0)

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  46
  • PDF下载量:  54
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-25
  • 网络出版日期:  2024-03-05

目录

/

返回文章
返回