高级检索

X80M钢管道全自动焊接接头裂纹尖端张开位移差异性

文学, 汪宏辉, 李熙岩, 钱建康, 毕思源, 雷正龙

文学, 汪宏辉, 李熙岩, 钱建康, 毕思源, 雷正龙. X80M钢管道全自动焊接接头裂纹尖端张开位移差异性[J]. 焊接学报, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001
引用本文: 文学, 汪宏辉, 李熙岩, 钱建康, 毕思源, 雷正龙. X80M钢管道全自动焊接接头裂纹尖端张开位移差异性[J]. 焊接学报, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001
WEN Xue, WANG Honghui, LI Xiyan, QIAN Jiankang, BI Siyuan, LEI Zhenglong. The difference of CTOD of X80M pipeline steel fully automatic welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001
Citation: WEN Xue, WANG Honghui, LI Xiyan, QIAN Jiankang, BI Siyuan, LEI Zhenglong. The difference of CTOD of X80M pipeline steel fully automatic welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001

X80M钢管道全自动焊接接头裂纹尖端张开位移差异性

详细信息
    作者简介:

    文学,硕士研究生,正高级工程师;主要从事国内外长输管道/场站储罐(油、气、水)焊接工艺设计、编制、培训、实施,以及焊接新工艺在实际生产应用中研究;Email: wenx.osec@sinopec.com

    通讯作者:

    雷正龙,博士,教授,博士研究生导师;Email: leizhenglong@hit.edu.cn

  • 中图分类号: TG 407

The difference of CTOD of X80M pipeline steel fully automatic welded joints

  • 摘要:

    针对不同预热条件下X80M钢管道全自动焊接接头,开展了裂纹尖端张开位移(crack tip opening displacement, CTOD)的差异性研究. 采用单边缺口3点弯曲试样进行CTOD试验,按照GB/T21143-2014标准和ISO15653-2018标准推荐的公式分别进行CTOD值的计算. 结果表明,两种计算公式结果不同,采用ISO 15653-2018标准推荐公式计算CTOD值结果与GB/T21143-2014标准相比平均偏高35%,差异出现的原因是两种标准的修正方式侧重点不同,即GB/T21143-2014标准针对裂纹长度变化进行修正,而ISO15653-2018标准针对测试温度的影响进行修正. 预热温度为80 ℃的接头试样CTOD值整体较低,其中按GB/T21143-2014标准计算有3个试样低于标准,最低为0.16 mm,按ISO 15653-2018标准计算有1个试样低于标准,最低为0.20 mm;预热温度为120 ℃时,所有试样在两种标准下计算的CTOD值均满足标准要求,焊接接头断裂韧性更好. 相同预热条件下,熔合区试样CTOD值整体高于焊缝区试样,且CTOD最大值均出现于熔合区,具有较好的断裂韧性,熔合区CTOD值受组织不均匀性的影响,不同位置间存在较大差异,存在性能的不均匀性.

    Abstract:

    Aiming at the fully automatic welded joints of X80M steel pipe under different preheating conditions, the difference of crack tip opening displacement is studied. The CTOD test is carried out on single notch three-point bending specimen, and CTOD value is calculated according to the formula recommended in GB/T21143-2014 and ISO15653-2018. The results show that: Compared with GB/T21143-2014, the results of CTOD calculated by formula recommended by ISO 15653-2018 are 35% higher on average. This difference is mainly due to the difference in the emphasis of the correction methods of the two standards, that is, the GB standard corrects the change of crack length, while the ISO standard adjusts for temperature effects. The CTOD value of the joint sample under the preheating condition of 80 ℃ is low on the whole. According to GB/T21143-2014, three samples are lower than the standard, the lowest is 0.16 mm, and according to ISO 15653-2018, one sample is lower than the standard, the lowest is 0.20 mm. Under the preheating condition of 120 ℃, the calculated CTOD values of all samples under the two standards meet the standard requirements, and the fracture toughness of welded joints is better. Under the same preheating conditions, the CTOD values of the fusion zone are higher than that of the weld zone, and the maximum value of CTOD values appearing in the fusion zone, which has good fracture toughness. However, the CTOD value of the fusion zone is affected by the inhomogeneity of the structure, resulting in great differences between different positions and uneven performance distribution.

  • 图  1   焊接接头坡口形式

    Figure  1.   Groove form of welding joint

    图  2   焊接接头焊道顺序(mm)

    Figure  2.   Weld sequence of welding joint

    图  3   不同预热温度焊接所得焊缝成形

    Figure  3.   Weld forming obtained by welding at different preheating temperatures. (a) preheat 80 ℃, cover weld; (b) preheat 80 ℃, root weld; (c) preheat 120 ℃, cover weld; (d) preheat 120 ℃, root weld

    图  4   CTOD 试样的加工尺寸(mm)

    Figure  4.   Dimensions of CTOD specimen

    图  5   CTOD试验F-V曲线

    Figure  5.   F-V curve of CTOD test

    图  6   CTOD试验预制疲劳裂纹位置

    Figure  6.   Prefabricated fatigue crack location in CTOD test. (a) fusion zone; (b) weld zone

    图  7   不同预热条件下X80M钢全自动焊接接头CTOD值对比

    Figure  7.   Comparison of CTOD values of fully automatic welded joints of X80M steel under different preheating conditions. (a) GB/T21143-2014 standard; (b) ISO 15653-2018 standard

    表  1   母材与焊丝的化学成分(质量分数,%)

    Table  1   Chemical composition of base metal and wire

    材料CMnCrSiNiCuNbFe
    X80M0.041.750.250.190.150.100.05余量
    ER80S-Ni10.071.150.030.610.890.21余量
    ER80S-G0.091.540.060.760.900.20余量
    下载: 导出CSV

    表  2   试验材料力学性能

    Table  2   Mechanical properties of test material

    预热温度T1/℃测试温度T2/℃规定非比例延伸强度
    RP0.2/MPa
    抗拉强度Rm/MPa
    80−45748824
    120−45748831
    下载: 导出CSV

    表  3   焊接接头CTOD计算值对比

    Table  3   Comparison of CTOD values of welded joints

    温度
    T/℃
    位置试样宽度
    W/mm
    试样厚度
    B/mm
    预制疲劳
    裂纹长度
    a0/mm
    最大载荷
    F/kN
    缺口张开位
    移塑性分量
    Vp/mm
    国家标准
    CTOD值
    δ1/mm
    国际标准
    CTOD值
    δ2/mm
    相对偏差
    ƞ(%)
    80 D1FL 40.08 20.10 18.53 56.675 1.04 0.31 0.43 35.35
    D2FL 40.12 20.10 19.23 52.594 0.99 0.29 0.39 36.33
    D3FL 40.04 20.08 19.66 50.335 0.76 0.23 0.31 35.09
    D1WM 40.08 20.08 19.14 52.285 0.45 0.16 0.20 28.48
    D2WM 40.10 20.12 18.84 55.608 0.69 0.23 0.30 32.89
    D3WM 40.08 20.06 18.88 57.432 0.87 0.27 0.36 33.46
    120 D1FL 40.08 20.02 18.80 55.471 1.50 0.43 0.58 36.24
    D2FL 40.06 20.10 18.67 54.883 1.18 0.35 0.47 36.52
    D3FL 40.02 20.06 19.39 54.758 2.21 0.59 0.80 37.26
    D1WM 40.06 20.14 18.71 54.014 1.33 0.38 0.52 36.58
    D2WM 40.06 20.14 18.94 55.679 1.18 0.34 0.47 35.76
    D3WM 40.10 20.14 18.74 54.611 1.03 0.31 0.42 35.95
    下载: 导出CSV

    表  4   CTOD塑性分量计算值对比

    Table  4   Comparison of plastic component of CTOD values

    温度
    T/℃
    位置应力强度因子
    g/(MPa $\cdot {\rm{mm} }^{-\tfrac{1}{2} }$)
    转动半径
    R/mm
    系数
    τ
    国家标准CTOD塑性分量
    Vp1/mm
    国际标准CTOD塑性分量
    Vp2/mm
    80 D1FL 2.36 24.80 1.10
    0.25Vp 0.37Vp
    D2FL 2.49 25.39 0.24Vp 0.35Vp
    D3FL 2.59 25.72 0.24Vp 0.34Vp
    D1WM 2.48 25.31 0.24Vp 0.35Vp
    D2WM 2.54 25.06 0.25Vp 0.36Vp
    D3WM 2.44 25.09 0.25Vp 0.36Vp
    120 D1FL 2.42 25.02 1.09
    0.25Vp 0.36Vp
    D2FL 2.40 24.90 0.25Vp 0.36Vp
    D3FL 2.54 25.50 0.24Vp 0.34Vp
    D1WM 2.40 24.94 0.25Vp 0.36Vp
    D2WM 2.45 25.14 0.25Vp 0.35Vp
    D3WM 2.40 24.97 0.25Vp 0.36Vp
    下载: 导出CSV
  • [1] 李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42.

    Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42.

    [2] 王楠, 陈永楠, 赵秦阳, 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299 − 1310.

    Wang Nan, Chen Yongnan, Zhao Qinyang, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel[J]. Acta Metallurgica Sinica, 2023, 59(10): 1299 − 1310.

    [3] 张继明. X80针状铁素体管线管的超高周疲劳行为[J]. 材料热处理学报, 2020, 41(4): 144 − 150.

    Zhang Jiming. Very high cycle fatigue behavior of X80 acicular ferrite line pipe[J]. Transactions of Materials and Heat Treatment, 2020, 41(4): 144 − 150.

    [4] 文学, 钱建康, 汪宏辉, 等. 装配条件对X80钢外根焊接头成分与性能的影响[J]. 焊接, 2022(5): 24 − 28.

    Wen Xue, Qian Jiankang, Wang Honghui, et al. Effect of assembly conditions on composition and mechanical properties of X80 steel outer root welded joints[J]. Welding & Joining, 2022(5): 24 − 28.

    [5]

    Kasuya T, Yurioka N. Determination of necessary preheat temper-ature to avoid cold cracking under varying ambienttemperature[J]. ISIJ International, 1995, 35(10): 1183 − 1189. doi: 10.2355/isijinternational.35.1183

    [6] 张勇, 孙琳琳, 綦秀玲. 曲面冲击头随焊冲击旋转挤压法控制40Cr钢冷裂纹[J]. 中国机械工程, 2017, 28(9): 1097 − 1100.

    Zhang Yong, Sun Linlin, Qi xiulin. Research on preventing weld cold crack of 40Cr by impact revolution curved rod[J]. China Mechanical Engineering, 2017, 28(9): 1097 − 1100.

    [7] 李亚娟, 贾鹏, 李午申, 等. X80管线钢焊接冷裂敏感性判据的建立[J]. 焊接学报, 2012, 33(4): 85 − 88.

    Li Yajuan, Jia Peng, Li Wushen, et al. Establishment of cold cracking susceptibility criterion for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2012, 33(4): 85 − 88.

    [8] 汪宏辉, 董淑磊, 钱建康, 等. 预热及保温对严寒环境X80钢管道全自动外焊焊缝组织与性能的影响[J]. 中国机械工程, 2021, 32(6): 748 − 755.

    Wang Honghui, Dong Shulei, Qian Jiankang, et al. Effects of pre-heating and heat preservation on microstructure and properties of fully automatic external welding seams of X80 steel pipes in severe cold environment[J]. China Mechanical Engineering, 2021, 32(6): 748 − 755.

    [9]

    Turichin G A, Kuznetsov M, Pozdnyako V A, et al. Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel[J]. Procedia CIRP, 2018, 74: 748 − 751. doi: 10.1016/j.procir.2018.08.018

    [10] 董现春, 刘新垚, 张大伟, 等. 双相车轮钢脉动预热闪光对焊接头开裂分析及工艺改进[J]. 焊接, 2021(5): 41 − 46.

    Dong Xianchun, Liu Xinyao, Zhang Dawei, et al. Cracking analysis and process improvement of pulse preheating flash butt welded joint of dual phase wheel steel[J]. Welding & Joining, 2021(5): 41 − 46.

    [11] 熊俊珍, 杨新岐, 唐文珅, 等. 焊后热处理对X52管线钢水下摩擦塞焊接头断裂韧性的影响[J]. 焊接, 2021(4): 1 − 7.

    Xiong Junzhen, Yang Xinqi, Tang Wenshen, et al. Effects of post-weld heat treatment on fracture toughness of underwater wet friction taper plug welded joints for X52 pipeline steel[J]. Welding & Joining, 2021(4): 1 − 7.

    [12] 卢俊文, 湛立宁, 丁玉松, 等. 低温压力容器用钢07MnNiMoDR焊接工艺研究[J]. 化工设备与管道, 2022, 59(5): 17 − 22.

    Lu Junwen, Zhan Lining, Ding yusong, et al. Research of welding procedure for steel 07MnNiMoDR used for low temperature pressure vessel[J]. Process Equipment & Piping, 2022, 59(5): 17 − 22.

    [13] 王磊, 宋高峰, 苏党红, 等. 环焊缝热影响区断裂韧性分布规律及统计处理方法[J]. 焊接学报, 2023, 44(6): 27 − 34. doi: 10.12073/j.hjxb.20220712001

    Wang Lei, Song Gaofeng, Su Danghong, et al. Fracture toughness distribution law and statistical treatment of heat-affected zone of circumferential welds[J]. Transactions of the China Welding Institution, 2023, 44(6): 27 − 34. doi: 10.12073/j.hjxb.20220712001

    [14] 鞠晓臣, 赵欣欣, 张佳丹, 等. 基于CTOD特征值的桥梁钢防脆断评价方法研究[J]. 桥梁建设, 2022, 52(2): 47 − 52.

    Ju Xiaochen, Zhao Xinxin, Zhang Jiadan, et al. Research on methods to evaluate brittle fracture resistance of bridge steel based on CTOD characteristic value[J]. Bridge Construction, 2022, 52(2): 47 − 52.

    [15] 张宏, 吴锴, 冯庆善, 等. 高钢级管道环焊接头力学性能与适用性评价研究进展[J]. 油气储运, 2022, 41(5): 481 − 497.

    Zhang Hong, Wu Kai, Feng Qingshan, et al. State of the art on mechanical properties and fitness-for-service assessment of high-grade pipeline girth weld[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 481 − 497.

    [16] 刘冬, 杜丽影, 李荣锋. 国家标准GB/T21143中CTOD计算公式转动修正方法探讨[J]. 武汉工程职业技术学院学报, 2016, 28(4): 5 − 8.

    Liu Dong, Du Liying, Li Rongfeng, et al. Study on rotation correction methods of CTOD calculation formula recommended by GB/T 21143[J]. Journal of Wuhan Engineering Institute, 2016, 28(4): 5 − 8.

    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料准静态断裂韧度的统一试验方法: GB/T 21143—2014[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-unified method of test for determination of quasistatic fracture toughness: GB/T 21143-2014[S]. Beijing: Standards Press of China, 2015.

    [18]

    BSI. Metallic materials-method of test for the determination of quasistatic fracture toughness of welds: BS EN ISO 15653: 2018[S]. London: BSI Standard Limited 2018, 2018: 21-44.

图(7)  /  表(4)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  24
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回