高级检索

2219/5A06异种铝合金脉冲VP-TIG焊工艺

徐光霈, 魏耀光, 冉洸奇, 陈瑶, 李桓

徐光霈, 魏耀光, 冉洸奇, 陈瑶, 李桓. 2219/5A06异种铝合金脉冲VP-TIG焊工艺[J]. 焊接学报, 2024, 45(2): 67-74. DOI: 10.12073/j.hjxb.20230326001
引用本文: 徐光霈, 魏耀光, 冉洸奇, 陈瑶, 李桓. 2219/5A06异种铝合金脉冲VP-TIG焊工艺[J]. 焊接学报, 2024, 45(2): 67-74. DOI: 10.12073/j.hjxb.20230326001
XU Guangpei, WEI Yaoguang, RAN Guangqi, CHEN Yao, LI Huan. Investigation of pulse VP-TIG welding process of 2219/5A06 dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 67-74. DOI: 10.12073/j.hjxb.20230326001
Citation: XU Guangpei, WEI Yaoguang, RAN Guangqi, CHEN Yao, LI Huan. Investigation of pulse VP-TIG welding process of 2219/5A06 dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 67-74. DOI: 10.12073/j.hjxb.20230326001

2219/5A06异种铝合金脉冲VP-TIG焊工艺

基金项目: 国家自然科学基金资助项目(51675375)
详细信息
    作者简介:

    徐光霈,硕士研究生;主要从事铝合金焊接的研究;Email: xgp18893918704@163.com

    通讯作者:

    李桓,教授,博士研究生导师;Email: lihuan@tju.edu.cn

  • 中图分类号: TG 444+.2

Investigation of pulse VP-TIG welding process of 2219/5A06 dissimilar aluminum alloy

  • 摘要:

    为了获取最优的焊接接头性能,采用脉冲VP-TIG焊方法,对5.5 mm厚的2219-T87和5A06-H112异种铝合金进行单层单道对接试验,设计了5种工艺参数3个因素水平的L27(39) 型正交试验,同时考虑3种因素间的交互作用,分析各因素对接头抗拉强度的影响,结果显示工艺参数对接头性能的影响从主到次依次为:焊接速度—坡口角度—峰值电流—脉冲频率—送丝速度; 通过正交优化,获得了理想的无缺陷焊接接头,对优化后焊接接头的力学性能、微观组织与腐蚀性能进行试验. 结果表明,接头断裂沿着2219侧熔合线附近最大应变处发生,该位置是整个接头中硬度最低的区域, 2219侧熔合线和焊缝耐蚀性最差,是点蚀优先发生的位置.

    Abstract:

    In order to obtain the best performance of welded joints, dissimilar aluminum alloys of 2219-T87 and 5A06-H112 with a thickness of 5.5 mm was joined by pulsed VP-TIG butt welding. The L27(39) type orthogonal table with five process parameters and three levels were designed, and the interaction between three factors was considered at the same time. The influence of each factor on the tensile strength of the joints was analyzed, and the results show that the influence of the process parameters on the joint performance is in the order: welding speed > groove angle > peak current > pulse frequency > wire feeding speed. Through orthogonal optimization, an ideal defect-free welded joint was obtained. The mechanical properties, microstructure and corrosion properties of the optimized welded joint were tested. The results show that the fracture edge of the joint was near the fusion line on the 2219 side, where the strain was the largest and the hardness was the lowest. The corrosion resistance of the 2219 side fusion line and the weld area is the worst, and it is the location where pitting corrosion occurs preferentially.

  • 图  1   信噪比响应图

    Figure  1.   Signal to noise ratio response diagram

    图  2   焊缝宏观形貌

    Figure  2.   Macroscopic morphology of weld. (a) weld formation; (b) weld cross section

    图  3   脉冲VP-TIG焊接头断裂位置

    Figure  3.   Fracture location of pulsed VP-TIG joint

    图  4   脉冲VP-TIG焊接头应变分布云图

    Figure  4.   Strain distribution cloud diagram of pulsed VP-TIG welded joint

    图  5   脉冲VP-TIG焊接头断口横截面组织

    Figure  5.   Fracture cross section structure of pulsed VP-TIG welded joint. (a) top; (b) middle; (c) bottom

    图  6   脉冲VP-TIG焊接头断口横截面第二相分布

    Figure  6.   Second phase distribution on the fracture cross section of pulsed VP-TIG welded joint. (a) top; (b) bottom

    图  7   脉冲VP-TIG焊接头2219侧断口形貌

    Figure  7.   Fracture morphology of 2219 side of pulsed VP-TIG welded joint

    图  8   脉冲VP-TIG焊接头显微硬度分布

    Figure  8.   Microhardness distribution of pulsed VP-TIG welded joints. (a) microhardness at different locations; (b) microhardness cloud image

    图  9   循环极化曲线

    Figure  9.   Cyclic polarization curve. (a) 2219 BM; (b) 2219 HAZ; (c) 2219 side fusion line; (d) welded seam

    图  10   腐蚀形貌

    Figure  10.   Corrosion morphology. (a) 2219 BM; (b) 2219 HAZ; (c) 2219 side fusion line; (d) welded seam

    表  1   母材和ER2319焊丝化学成分

    Table  1   Chemicial compositions of the base material and the ER2319 welding wire

    材料SiFeCuMnMgZnTiZrAl其它
    2219-T870.20.35.8 ~ 6.80.2 ~ 0.40.020.10.02 ~ 0.10.10 ~ 0.25余量V:0.050 0 ~ 0.150 0
    5A06-H1120.40.40.10.5 ~ 0.85.80 ~ 6.800.20.02 ~ 0.1余量Be:0.000 1 ~ 0.005 0
    ER23190.20.35.8 ~ 6.80.2 ~ 0.40.200.10.10 ~ 0.200.10 ~ 0.25余量V:0.050 0 ~ 0.150 0
    下载: 导出CSV

    表  2   因素及水平设计表

    Table  2   Design table of factors and levels

    编号工艺参数(因素)水平1水平2水平3
    A峰值电流Ip /A230.0240.0250.0
    B焊接速度v/(mm·min−1)100.0120.0140.0
    C送丝速度vs /(mm·min−1)2.52.62.7
    D坡口角度α/(°)70.080.090.0
    E脉冲频率f / Hz1.02.03.0
    下载: 导出CSV

    表  3   试验方案与试验结果

    Table  3   Experiment scheme and corresponding results

    试验编号ABA × BCA × CDA × DE空列试验方案抗拉强度Rm/MPa
    1111111111A1B1C1D1E1272.05
    2111122222A1B1C1D2E2276.17
    3111133333A1B1C1D3E3276.17
    4122211122A1B2C2D1E2271.12
    5122222233A1B2C2D2E3277.58
    6122233311A1B2C2D3E1189.70
    7133311133A1B3C3D1E3299.00
    8133322211A1B3C3D2E1284.69
    9133333322A1B3C3D3E2261.00
    10212312312A2B1C3D2E1253.75
    11212323123A2B1C3D3E2246.04
    12212331231A2B1C3D1E3253.83
    13223112323A2B2C1D2E2260.60
    14223123131A2B2C1D3E3239.90
    15223131212A2B2C1D1E1277.86
    16231212331A2B3C2D2E3286.05
    17231223112A2B3C2D3E1270.42
    18231231223A2B3C2D1E2285.13
    19313213213A3B1C2D3E1260.36
    20313221321A3B1C2D1E2282.76
    21313232132A3B1C2D2E3286.95
    22321313221A3B2C3D3E2281.28
    23321321332A3B2C3D1E3282.53
    24321332113A3B2C3D2E1258.72
    25332113232A3B3C1D3E3287.49
    26332121313A3B3C1D1E1311.32
    27332132121A3B3C1D2E2302.62
    下载: 导出CSV

    表  4   抗拉强度的信噪比

    Table  4   Signal to noise ratio of tensile strength

    试验编号信噪比S/N 试验编号信噪比S/N 试验编号信噪比S/N
    148.69 1048.07 1948.24
    248.821147.812048.78
    348.781248.062149.16
    448.661348.322248.97
    548.851447.492349.00
    645.091548.872448.25
    749.511649.132549.16
    849.081748.642649.86
    948.331849.102749.62
    下载: 导出CSV

    表  5   信噪比响应表

    Table  5   Signal to noise ratio response table

    水平ABA × BCA × CDA × DE空列
    148.4248.4948.8248.8548.7548.9548.6548.3148.32
    248.3948.1748.3548.4048.7048.8148.7948.7148.74
    349.0049.1648.6448.5648.3648.0648.3748.7948.75
    极差R0.620.990.470.440.390.890.420.480.42
    排秩3.001.005.006.009.002.008.004.007.00
    下载: 导出CSV

    表  6   信噪比方差分析表

    Table  6   Analysis of variance for signal-to-noise ratio

    因素自由度m偏差平方和USS方差σMSFP
    A22.157 71.078 82.200.161
    B24.618 82.309 44.710.036
    A × B20.995 80.497 91.020.397
    C20.899 50.449 70.920.431
    A × C20.812 20.406 10.830.465
    D24.140 72.070 44.220.047
    A × D20.828 10.414 00.840.458
    E21.200 60.600 31.220.335
    误差104.903 40.490 3
    合计2620.556 9
    下载: 导出CSV

    表  7   Minitab 预测值和实际测量值

    Table  7   Minitab predicted and actual measured value

    类别试验方案信噪比S/N抗拉强度Rm/MPa
    Minitab预测值A3B3C1D1E3(最佳)50.33321.21
    A3B3C1D1E1(26号)49.85308.92
    实际测量值A3B3C1D1E3(最佳)50.04317.45
    A3B3C1D1E1(26号)49.86311.32
    下载: 导出CSV

    表  8   循环电化学极化试验结果

    Table  8   Design table of factors and levels

    区域腐蚀
    电位
    Ecorr/V
    腐蚀电流
    密度icorr /
    (10−4A·cm−2)
    点蚀
    电位
    Epit/V
    重新钝
    化电位
    Eprot/V
    电位差
    E1/mV
    2219母材−1.0940.197−0.599−0.67576
    2219热影响区−1.1211.100−0.588−0.699111
    2219侧熔合线−1.0791.290−0.632−0.765133
    焊缝−1.0931.370−0.627−0.776149
    下载: 导出CSV
  • [1]

    Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 727: 531 − 539. doi: 10.1016/j.jallcom.2017.08.157

    [2]

    Gao J, Yang L, Cui L, et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828 − 838. doi: 10.1007/s40195-020-01015-1

    [3] 董晓晶, 李桓, 杨立军, 等. 铝合金多股复合焊丝脉冲MIG焊接接头组织与性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    Dong Xiaojing, Li Huan, Yang Lijun, et al. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    [4] 王非凡, 谢聿铭, 吴会强, 等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报, 2022, 43(6): 43 − 49.

    Wang Feifan, Xie Yuming, Wu Huiqiang, et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 43 − 49.

    [5] 方远方, 张华, 窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析[J]. 焊接学报, 2020, 41(1): 86 − 90.

    Fang Yuanfang, Zhang Hua, Dou Chengliang. Study on friction stir lap weld of 2A12-T4/7A09-T6 aluminum alloys[J]. Transactions of the China Welding Institution, 2020, 41(1): 86 − 90.

    [6] 高士康, 周利, 张欣盟, 等. 6061-T6/7075-T6异种铝合金搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2022, 43(6): 35 − 42.

    Gao Shikang, Zhou Li, Zhang Xinmeng, et al. Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(6): 35 − 42.

    [7]

    Koilraj M, Sundareswaran V, Vijayan S, et al. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–optimization of process parameters using taguchi technique[J]. Materials & Design, 2012, 42: 1 − 7.

    [8] 毛志伟, 徐伟, 周少玲, 等. 基于田口方法旋转电弧焊接工艺参数优化[J]. 热加工工艺, 2016, 45(11): 169 − 173.

    Mao Zhiwei, Xu Wei, Zhou Shaoling, et al. Optimization of rotating arc sensor welding parameters using taguchi method[J]. Hot Working Technology, 2016, 45(11): 169 − 173.

    [9]

    Ma Z, Li Q, Ma L, et al. Process parameters optimization of friction stir welding of 6005A-T6 aluminum alloy using taguchi technique[J]. Transactions of the Indian Institute of Metals, 2019, 72(7): 1721 − 1731. doi: 10.1007/s12666-019-01639-7

    [10] 李涛, 李芳, 顾勇, 等. 基于田口方法的铸铝A356焊接工艺参数优化研究[J]. 热加工工艺, 2016, 45(9): 43 − 47.

    Li Tao, Li Fang, Gu Yong, et al. Study on optimization of welding process parameters for A356 cast aluminum alloy based on Taguchi method[J]. Hot Working Technology, 2016, 45(9): 43 − 47.

    [11]

    Lin Y T, Wang M C, Zhang Y, et al. Investigation of microstructure evolution after post-weld heat treatment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints[J]. Materials & Design, 2017, 113: 54 − 59.

图(10)  /  表(8)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  37
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 网络出版日期:  2023-07-25
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回