Investigation of pulse VP-TIG welding process of 2219/5A06 dissimilar aluminum alloy
-
摘要:
为了获取最优的焊接接头性能,采用脉冲VP-TIG焊方法,对5.5 mm厚的2219-T87和5A06-H112异种铝合金进行单层单道对接试验,设计了5种工艺参数3个因素水平的L27(39) 型正交试验,同时考虑3种因素间的交互作用,分析各因素对接头抗拉强度的影响,结果显示工艺参数对接头性能的影响从主到次依次为:焊接速度—坡口角度—峰值电流—脉冲频率—送丝速度; 通过正交优化,获得了理想的无缺陷焊接接头,对优化后焊接接头的力学性能、微观组织与腐蚀性能进行试验. 结果表明,接头断裂沿着2219侧熔合线附近最大应变处发生,该位置是整个接头中硬度最低的区域, 2219侧熔合线和焊缝耐蚀性最差,是点蚀优先发生的位置.
Abstract:In order to obtain the best performance of welded joints, dissimilar aluminum alloys of 2219-T87 and 5A06-H112 with a thickness of 5.5 mm was joined by pulsed VP-TIG butt welding. The L27(39) type orthogonal table with five process parameters and three levels were designed, and the interaction between three factors was considered at the same time. The influence of each factor on the tensile strength of the joints was analyzed, and the results show that the influence of the process parameters on the joint performance is in the order: welding speed > groove angle > peak current > pulse frequency > wire feeding speed. Through orthogonal optimization, an ideal defect-free welded joint was obtained. The mechanical properties, microstructure and corrosion properties of the optimized welded joint were tested. The results show that the fracture edge of the joint was near the fusion line on the 2219 side, where the strain was the largest and the hardness was the lowest. The corrosion resistance of the 2219 side fusion line and the weld area is the worst, and it is the location where pitting corrosion occurs preferentially.
-
-
表 1 母材和ER2319焊丝化学成分
Table 1 Chemicial compositions of the base material and the ER2319 welding wire
材料 Si Fe Cu Mn Mg Zn Ti Zr Al 其它 2219-T87 0.2 0.3 5.8 ~ 6.8 0.2 ~ 0.4 0.02 0.1 0.02 ~ 0.1 0.10 ~ 0.25 余量 V:0.050 0 ~ 0.150 0 5A06-H112 0.4 0.4 0.1 0.5 ~ 0.8 5.80 ~ 6.80 0.2 0.02 ~ 0.1 - 余量 Be:0.000 1 ~ 0.005 0 ER2319 0.2 0.3 5.8 ~ 6.8 0.2 ~ 0.4 0.20 0.1 0.10 ~ 0.20 0.10 ~ 0.25 余量 V:0.050 0 ~ 0.150 0 表 2 因素及水平设计表
Table 2 Design table of factors and levels
编号 工艺参数(因素) 水平1 水平2 水平3 A 峰值电流Ip /A 230.0 240.0 250.0 B 焊接速度v/(mm·min−1) 100.0 120.0 140.0 C 送丝速度vs /(mm·min−1) 2.5 2.6 2.7 D 坡口角度α/(°) 70.0 80.0 90.0 E 脉冲频率f / Hz 1.0 2.0 3.0 表 3 试验方案与试验结果
Table 3 Experiment scheme and corresponding results
试验编号 A B A × B C A × C D A × D E 空列 试验方案 抗拉强度Rm/MPa 1 1 1 1 1 1 1 1 1 1 A1B1C1D1E1 272.05 2 1 1 1 1 2 2 2 2 2 A1B1C1D2E2 276.17 3 1 1 1 1 3 3 3 3 3 A1B1C1D3E3 276.17 4 1 2 2 2 1 1 1 2 2 A1B2C2D1E2 271.12 5 1 2 2 2 2 2 2 3 3 A1B2C2D2E3 277.58 6 1 2 2 2 3 3 3 1 1 A1B2C2D3E1 189.70 7 1 3 3 3 1 1 1 3 3 A1B3C3D1E3 299.00 8 1 3 3 3 2 2 2 1 1 A1B3C3D2E1 284.69 9 1 3 3 3 3 3 3 2 2 A1B3C3D3E2 261.00 10 2 1 2 3 1 2 3 1 2 A2B1C3D2E1 253.75 11 2 1 2 3 2 3 1 2 3 A2B1C3D3E2 246.04 12 2 1 2 3 3 1 2 3 1 A2B1C3D1E3 253.83 13 2 2 3 1 1 2 3 2 3 A2B2C1D2E2 260.60 14 2 2 3 1 2 3 1 3 1 A2B2C1D3E3 239.90 15 2 2 3 1 3 1 2 1 2 A2B2C1D1E1 277.86 16 2 3 1 2 1 2 3 3 1 A2B3C2D2E3 286.05 17 2 3 1 2 2 3 1 1 2 A2B3C2D3E1 270.42 18 2 3 1 2 3 1 2 2 3 A2B3C2D1E2 285.13 19 3 1 3 2 1 3 2 1 3 A3B1C2D3E1 260.36 20 3 1 3 2 2 1 3 2 1 A3B1C2D1E2 282.76 21 3 1 3 2 3 2 1 3 2 A3B1C2D2E3 286.95 22 3 2 1 3 1 3 2 2 1 A3B2C3D3E2 281.28 23 3 2 1 3 2 1 3 3 2 A3B2C3D1E3 282.53 24 3 2 1 3 3 2 1 1 3 A3B2C3D2E1 258.72 25 3 3 2 1 1 3 2 3 2 A3B3C1D3E3 287.49 26 3 3 2 1 2 1 3 1 3 A3B3C1D1E1 311.32 27 3 3 2 1 3 2 1 2 1 A3B3C1D2E2 302.62 表 4 抗拉强度的信噪比
Table 4 Signal to noise ratio of tensile strength
试验编号 信噪比S/N 试验编号 信噪比S/N 试验编号 信噪比S/N 1 48.69 10 48.07 19 48.24 2 48.82 11 47.81 20 48.78 3 48.78 12 48.06 21 49.16 4 48.66 13 48.32 22 48.97 5 48.85 14 47.49 23 49.00 6 45.09 15 48.87 24 48.25 7 49.51 16 49.13 25 49.16 8 49.08 17 48.64 26 49.86 9 48.33 18 49.10 27 49.62 表 5 信噪比响应表
Table 5 Signal to noise ratio response table
水平 A B A × B C A × C D A × D E 空列 1 48.42 48.49 48.82 48.85 48.75 48.95 48.65 48.31 48.32 2 48.39 48.17 48.35 48.40 48.70 48.81 48.79 48.71 48.74 3 49.00 49.16 48.64 48.56 48.36 48.06 48.37 48.79 48.75 极差R 0.62 0.99 0.47 0.44 0.39 0.89 0.42 0.48 0.42 排秩 3.00 1.00 5.00 6.00 9.00 2.00 8.00 4.00 7.00 表 6 信噪比方差分析表
Table 6 Analysis of variance for signal-to-noise ratio
因素 自由度m 偏差平方和USS 方差σMS F值 P值 A 2 2.157 7 1.078 8 2.20 0.161 B 2 4.618 8 2.309 4 4.71 0.036 A × B 2 0.995 8 0.497 9 1.02 0.397 C 2 0.899 5 0.449 7 0.92 0.431 A × C 2 0.812 2 0.406 1 0.83 0.465 D 2 4.140 7 2.070 4 4.22 0.047 A × D 2 0.828 1 0.414 0 0.84 0.458 E 2 1.200 6 0.600 3 1.22 0.335 误差 10 4.903 4 0.490 3 合计 26 20.556 9 表 7 Minitab 预测值和实际测量值
Table 7 Minitab predicted and actual measured value
类别 试验方案 信噪比S/N 抗拉强度Rm/MPa Minitab预测值 A3B3C1D1E3(最佳) 50.33 321.21 A3B3C1D1E1(26号) 49.85 308.92 实际测量值 A3B3C1D1E3(最佳) 50.04 317.45 A3B3C1D1E1(26号) 49.86 311.32 表 8 循环电化学极化试验结果
Table 8 Design table of factors and levels
区域 腐蚀
电位
Ecorr/V腐蚀电流
密度icorr /
(10−4A·cm−2)点蚀
电位
Epit/V重新钝
化电位
Eprot/V电位差
∆E1/mV2219母材 −1.094 0.197 −0.599 −0.675 76 2219热影响区 −1.121 1.100 −0.588 −0.699 111 2219侧熔合线 −1.079 1.290 −0.632 −0.765 133 焊缝 −1.093 1.370 −0.627 −0.776 149 -
[1] Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 727: 531 − 539. doi: 10.1016/j.jallcom.2017.08.157
[2] Gao J, Yang L, Cui L, et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828 − 838. doi: 10.1007/s40195-020-01015-1
[3] 董晓晶, 李桓, 杨立军, 等. 铝合金多股复合焊丝脉冲MIG焊接接头组织与性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289 Dong Xiaojing, Li Huan, Yang Lijun, et al. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
[4] 王非凡, 谢聿铭, 吴会强, 等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报, 2022, 43(6): 43 − 49. Wang Feifan, Xie Yuming, Wu Huiqiang, et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 43 − 49.
[5] 方远方, 张华, 窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析[J]. 焊接学报, 2020, 41(1): 86 − 90. Fang Yuanfang, Zhang Hua, Dou Chengliang. Study on friction stir lap weld of 2A12-T4/7A09-T6 aluminum alloys[J]. Transactions of the China Welding Institution, 2020, 41(1): 86 − 90.
[6] 高士康, 周利, 张欣盟, 等. 6061-T6/7075-T6异种铝合金搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2022, 43(6): 35 − 42. Gao Shikang, Zhou Li, Zhang Xinmeng, et al. Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(6): 35 − 42.
[7] Koilraj M, Sundareswaran V, Vijayan S, et al. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–optimization of process parameters using taguchi technique[J]. Materials & Design, 2012, 42: 1 − 7.
[8] 毛志伟, 徐伟, 周少玲, 等. 基于田口方法旋转电弧焊接工艺参数优化[J]. 热加工工艺, 2016, 45(11): 169 − 173. Mao Zhiwei, Xu Wei, Zhou Shaoling, et al. Optimization of rotating arc sensor welding parameters using taguchi method[J]. Hot Working Technology, 2016, 45(11): 169 − 173.
[9] Ma Z, Li Q, Ma L, et al. Process parameters optimization of friction stir welding of 6005A-T6 aluminum alloy using taguchi technique[J]. Transactions of the Indian Institute of Metals, 2019, 72(7): 1721 − 1731. doi: 10.1007/s12666-019-01639-7
[10] 李涛, 李芳, 顾勇, 等. 基于田口方法的铸铝A356焊接工艺参数优化研究[J]. 热加工工艺, 2016, 45(9): 43 − 47. Li Tao, Li Fang, Gu Yong, et al. Study on optimization of welding process parameters for A356 cast aluminum alloy based on Taguchi method[J]. Hot Working Technology, 2016, 45(9): 43 − 47.
[11] Lin Y T, Wang M C, Zhang Y, et al. Investigation of microstructure evolution after post-weld heat treatment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints[J]. Materials & Design, 2017, 113: 54 − 59.