高级检索

基于变可信度近似模型的BGA焊点可靠性预测与优化方法

于敬丹, 王儒, 吴文志, 胡子翔, 张楚雷, 王国新, 阎艳

于敬丹, 王儒, 吴文志, 胡子翔, 张楚雷, 王国新, 阎艳. 基于变可信度近似模型的BGA焊点可靠性预测与优化方法[J]. 焊接学报, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002
引用本文: 于敬丹, 王儒, 吴文志, 胡子翔, 张楚雷, 王国新, 阎艳. 基于变可信度近似模型的BGA焊点可靠性预测与优化方法[J]. 焊接学报, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002
YU Jingdan, WANG Ru, WU Wenzhi, HU Zixiang, ZHANG Chulei, WANG Guoxin, YAN Yan. Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002
Citation: YU Jingdan, WANG Ru, WU Wenzhi, HU Zixiang, ZHANG Chulei, WANG Guoxin, YAN Yan. Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002

基于变可信度近似模型的BGA焊点可靠性预测与优化方法

基金项目: 国家自然科学基金项目(52105241);部委科研项目(ZQ2020D210005);国防基础科研项目(JCKY2020210B007).
详细信息
    作者简介:

    于敬丹,硕士;主要研究方向为数据与模型融合驱动的装焊工艺性能预测与智能决策技术;Email: 2585831632@qq.com

    通讯作者:

    王儒,助理教授;Email: ru.wang13@bit.edu.cn

  • 中图分类号: TG 407

Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model

  • 摘要:

    焊点可靠性预测研究多采用有限元仿真与单一精度近似模型相结合的模式,存在仿真时间长、效率低、准确性差等问题,为此,提出了一种基于变可信度近似模型的球栅阵列(ball grid array,BGA)焊点可靠性预测与优化方法.首先, 对不同网格细化方案进行收敛性验证,分别设计高/低精度样本点进行有限元仿真;其次,基于Co-Kriging模型融合高/低精度仿真数据进行焊点可靠性预测;最后,将预测结果与单一精度近似模型进行对比分析,并采用遗传算法优化模型获得对应结构参数.结果表明,在更少的仿真成本下,变可信度模型的预测效果更好,在同等预测精度下,变可信度模型高精度样本点数量仅为单一精度模型的1/4,相比高精度神经网络预测模型,在寻优过程中收敛更快.

    Abstract:

    At present, the reliability prediction of solder joints is mostly based on the combination of finite element simulation and single precision surrogate model, which has some problems such as long simulation time, low efficiency and poor accuracy. Therefore, a reliability prediction method for BGA (ball grid array) solder joints based on multi-fidelity model is proposed. Firstly, the convergence of different meshing schemes was verified, and then the high and low precision sample points were designed respectively for finite element analysis (FEA). Secondly, the reliability of solder joints was predicted based on the Co-Kriging model based on multi fidelity FEA data. Finally, the prediction results were compared with the single precision surrogate model, Under the same cost constraints, the multi-fidelity model demonstrates significantly higher prediction accuracy. and NSGA(nondominated sorting genetic algorithm) was used to optimize the model to obtain the corresponding process parameters. The results show that with less simulation cost, the prediction result of multi-fidelity model is better. Under the same prediction accuracy, the number of high-precision sample points of the variable reliability model is only 1/4 of that of the single precision model. At the same time, compared with the neural network prediction model, it converges faster in the optimization process. This paper provides some reference for the research of reliability prediction of solder joint with multi-fidelity model.

  • 图  1   焊点应力分布云图

    Figure  1.   Solder joint stress distribution cloud diagram

    图  2   温度循环下的最大应力

    Figure  2.   Maximum stress under temperature cycle

    图  3   累计塑性应变

    Figure  3.   Accumulative plastic strain

    图  4   网格划分方案

    Figure  4.   Grid division scheme. (a) global refinement; (b) edge refinement; (c) above and below refinement; (d) side refinement

    图  5   网格划分方案收敛性测试

    Figure  5.   Convergence test of meshing scheme

    图  6   样本点设计

    Figure  6.   Design sample points. (a) not nest; (b) nest

    图  7   焊点应力寻优结果

    Figure  7.   Optimization results of solder joint stress. (a) neural network model; (b) multi-fidelity model

    图  8   焊点寿命寻优结果

    Figure  8.   Optimization results of solder joint life. (a) neural network model; (b) multi-fidelity model

    表  1   焊点材料参数

    Table  1   Solder joint material parameters

    温度T/℃杨氏模量E/MPa泊松比ν
    −5547 9700.352
    −3546 8900.354
    −1545 7900.357
    544 3800.360
    2043 2500.363
    5041 3300.365
    7539 4500.370
    100368500.377
    125345900.380
    下载: 导出CSV

    表  2   不同模型应力和寿命测试结果

    Table  2   Stress test results and life test results of different models

    编号应力相对误差δ1 寿命相对误差δ2
    嵌套
    Co-Kriging
    非嵌套
    Co-Kriging
    高精度
    神经网络
    高精度
    Kriging
    嵌套
    Co-Kriging
    非嵌套
    Co-Kriging
    高精度
    神经网络
    高精度
    Kriging
    1−0.013 9−0.017 1−0.060 70.034 3 −0.157 9−0.005 91.132 5−0.221 4
    2−0.013 4−0.011 90.016 70.047 9−0.039 90.152 30.159 8−0.540 5
    3−0.051 1−0.063 00.065 10.027 80.391 50.319 2−0.337 4−0.357 3
    40.001 6−0.011 1−0.008 9−0.015 2−0.020 4−0.309 30.569 40.015 0
    50.008 00.004 8−0.068 00.012 50.044 20.074 10.330 80.433 8
    60.009 70.015 1−0.020 6−0.008 4−0.533 70.094 80.326 0−0.115 6
    70.022 40.029 0−0.122 7−0.043 0−0.251 9−0.485 71.893 12.449 3
    80.011 00.052 6−0.105 9−0.070 4−1.001 0−1.500 50.478 92.268 6
    9−0.077 0−0.036 0−0.016 5−0.099 10.069 0−0.090 8−0.233 10.948 6
    10−0.010 60.056 0−0.028 1−0.037 6−0.441 4−0.151 21.098 20.712 6
    110.015 9−0.003 9−0.016 10.042 90.163 90.091 20.110 7−0.569 4
    12−0.026 1−0.026 6−0.024 30.108 70.180 30.463 50.204 6−0.560 9
    130.020 1−0.000 1−0.004 30.018 7−0.157 9−0.144 2−0.017 4−0.385 8
    RMSE0.621 80.709 81.290 01.1629.010 536.4 745.2379.32
    样本组成ABCCABCC
    仿真时长 t/min3 250 3 250 5 000 5 000 3 250 3 250 5 000 5 000
    下载: 导出CSV

    表  3   高精度样本点个数与应力预测效果

    Table  3   Number of high-precision sample points and stress prediction performance

    高精度样本点个数N均方根误差δRMSE
    201.1996
    250.7638
    300.7497
    350.7220
    400.6576
    450.6344
    500.6218
    下载: 导出CSV

    表  4   遗传算法参数

    Table  4   Parameters of genetic algorithm

    初始种群
    数量m
    最大迭代数
    max
    精英数
    n
    交叉
    概率A
    函数收敛
    残差δ
    扩展适应度
    函数
    5010050.81 × 10−10Rank
    下载: 导出CSV
  • [1] 盛重, 薛松柏, 张亮, 等. 基于蠕变模型倒装芯片焊点疲劳寿命预测[J]. 焊接学报, 2008, 29(10): 53 − 56. doi: 10.3321/j.issn:0253-360X.2008.10.014

    Sheng Zhong, Xue Songbai, Zhang Liang, et al. Fatigue life prediction for flip chip soldered joints based on creep model[J]. Transactions of the China Welding Institution, 2008, 29(10): 53 − 56. doi: 10.3321/j.issn:0253-360X.2008.10.014

    [2] 安彤, 陈晓萱, 秦飞, 等. 热、振及热振耦合条件下塑封球栅阵列含铅焊点失效分析[J]. 焊接学报, 2021, 42(9): 49 − 54. doi: 10.12073/j.hjxb.20190417001

    An Tong, Chen Xiaoxuan, Qin Fei, et al. PBGA solder joint fatigue under temperature cycling, random vibration and combined vibration and thermal cycling loading conditions[J]. Transactions of the China Welding Institution, 2021, 42(9): 49 − 54. doi: 10.12073/j.hjxb.20190417001

    [3] 孙磊, 张屹, 陈明和, 等. 3D封装芯片焊点可靠性有限元分析[J]. 焊接学报, 2021, 42(1): 49 − 53.

    Sun Lei, Zhang Yi, Chen Minghe, et al. Finite element analysis of solder joint reliability of 3D packaging chip[J]. Transactions of the China Welding Institution, 2021, 42(1): 49 − 53.

    [4] 黄春跃, 赵胜军, 梁颖, 等. CSP焊点焊后残余应力分析与预测[J]. 电子科技大学学报, 2021, 50(1): 148 − 154. doi: 10.12178/1001-0548.2019114

    Huang Chunyue, Zhao Shengjun, Liang Ying, et al. Analysis and prediction of residual stress after reflow soldering of CSP solder Joints[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 148 − 154. doi: 10.12178/1001-0548.2019114

    [5] 高超, 黄春跃, 梁颖, 等. 微尺度CSP焊点弯振耦合应力应变分析与优化[J]. 振动与冲击, 2021, 40(9): 55 − 62. doi: 10.13465/j.cnki.jvs.2021.09.008

    Gao Chao, Huang Chunyue, Liang Ying, et al. Analysis and optimization of bending-vibration coupled stress and strain of micro-scale CSP solder joint[J]. Journal of Vibration and Shock, 2021, 40(9): 55 − 62. doi: 10.13465/j.cnki.jvs.2021.09.008

    [6] 王超超. 基于变可信度近似模型的激光深熔焊工艺参数优化[D]. 武汉: 华中科技大学, 2017.

    Wang Chaochao. Optimization of laser deep fusion welding process parameters based on variable reliability approximate model[D]. Wuhan: Huazhong University of Science and Technology, 2017.

    [7] 周奇. 基于变复杂度近似模型的机械产品稳健性设计优化方法研究[D]. 武汉: 华中科技大学, 2018.

    Zhou Qi. Research on robust design optimization method of mechanical products based on variable complexity approximate model[D]. Wuhan: Huazhong University of Science and Technology, 2018.

    [8] 周奇, 杨扬, 宋学官, 等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报, 2020, 56(24): 219 − 245. doi: 10.3901/JME.2020.24.219

    Zhou Qi, Yang Yang, Song Xueguan, et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering, 2020, 56(24): 219 − 245. doi: 10.3901/JME.2020.24.219

    [9]

    Han Z H, Gӧrtz S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9): 1885 − 1896. doi: 10.2514/1.J051354

    [10]

    Hu J, Zhou Q, Jiang P, et al. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging[J]. Engineering Optimization, 2017, 50(5): 1 − 19.

    [11] 阮雄风. 基于改进Co-Kriging模型的变复杂度EGO优化方法研究[D]. 武汉: 华中科技大学, 2020.

    Ruan Xiongfeng. Research on variable complexity EGO optimization method based on improved Co-Kriging model [D]. Wuhan: Huazhong University of Science and Technology, 2020.

    [12]

    Proppe C, Kaupp J. On information fusion for reliability estimation with multifidelity models[J]. Probabilistic Engineering Mechanics, 2022, 69: 1 − 9.

    [13]

    Huang E, Jie X, Si Z, et al. Multi-fidelity model integration for engineering design[J]. Procedia Computer Science, 2015, 44: 336 − 344. doi: 10.1016/j.procs.2015.03.002

    [14]

    Santos M J, Hosder S, West T K. Multifidelity modeling for efficient aerothermal prediction of deployable entry vehicles[J]. Journal of Spacecraft and Rockets, 2021, 58(1): 110 − 123. doi: 10.2514/1.A34752

    [15]

    Ahn S, Min S. Multi-fidelity model-based size optimization of electric machines[J]. IEEE Access, 2022, 10: 75898 − 75907. doi: 10.1109/ACCESS.2022.3192404

    [16]

    Zhang X, Xie F, Ji T, et al. Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113485. doi: 10.1016/j.cma.2020.113485

    [17]

    March A, Cox K W, Wang Q. Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration[J]. Aeronautical Journal, 2011, 115: 729 − 738. doi: 10.1017/S0001924000006473

    [18] 闫青亮. PBGA无铅焊点可靠性的有限元模拟与寿命预测[D]. 天津: 天津大学, 2007.

    Yan Qingliang. Finite element simulation and life prediction of PBGA lead-free solder joint reliability[D]. Tianjin: Tianjin University, 2007

    [19]

    Liu Y, Wang, S, Zhou Q, et al. Modified multifidelity surrogate model based on radial basis function with adaptive scale factor[J]. Chinese Journal of Mechanical Engineering, 2022(4): 93 − 107.

图(8)  /  表(4)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  38
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-04
  • 网络出版日期:  2023-09-17
  • 刊出日期:  2024-01-30

目录

    /

    返回文章
    返回