Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics
-
摘要: 为了提高等离子弧焊熔池熔透状态预测的准确率,满足工业应用的需求,提出了一种融合图像空间和通道特征的熔池熔透状态预测模型PCSCNet. 在该模型中对残差网络(residual network, ResNet50)结构进行改造,并融入压缩和激励网络来同时提取熔池正面图像的空间和通道特征信息. 采用恒定电流等离子弧焊试验的数据集进行测试,建立了熔池正面图像与熔池熔透状态的对应关系. 结果表明,模型预测准确率提升到95%以上. 采用Grad-CAM方法对模型进行可视化,分析并揭示了模型预测的聚焦区域,与实际熔池的图像特征进行对比,验证了模型的合理性.Abstract: To improve the accuracy of predicting the molten pool penetration state in plasma arc welding so as to meet industrial needs, this paper proposes a model called PCSCNet that integrates image space and channel characteristics. In this model, the convolutional residual network ResNet50 structure is modified and integrated into the channel attention network squeeze and excitation network to simultaneously extract spatial feature information and channel feature information from the front image of the molten pool. By testing on a dataset of constant current plasma arc welding experiments, the model establishes the corresponding relationship between the front surface image of the weld pool and the state of the keyhole. The results show that the model achieves a prediction accuracy of over 95%. Using the Grad-CAM method, the model's predicted focus area is visualized, analyzed, and compared with the actual molten pool's image features to verify the model's reliability.
-
-
表 1 焊接工艺参数
Table 1 Welding paraments
试验
编号氩气流量
Q/(L·min−1)焊接电流
I/A焊接速度
v/(mm·min−1)电弧电压
U/ V1 2.6 125 120 29.12 2 2.6 130 120 30.06 3 2.6 135 120 30.99 4 2.6 140 120 31.93 5 2.6 145 120 32.86 6 2.6 150 120 33.80 7 2.6 125 90 35.10 8 2.6 125 100 35.24 9 2.6 125 110 35.38 10 2.6 125 120 35.52 11 2.6 125 130 35.66 12 2.4 125 120 29.79 13 2.6 125 120 30.02 14 2.8 125 120 30.24 15 3.0 125 120 30.47 16 3.2 125 120 30.69 表 2 数据集中样本数量
Table 2 Sample quantity in data set
个 数据集 穿孔状态样本数n0 未穿孔状态样本数n1 训练集 3 267 2 801 验证集 1 088 946 测试集 1 088 946 表 3 试验参数设置
Table 3 Experimental parameter setting
试验
编号优化器 学习率
lr批大小
p迭代次数
N/次精度
P(%)1 SGD 0.001 32 100 59.14 2 Adam 0.001 32 100 95.47 3 Adam 0.01 32 100 53.56 4 Adam 0.000 1 32 100 95.84 5 Adam 0.000 1 64 100 95.57 6 Adam 0.000 1 16 100 95.28 7 Adam 0.000 1 32 200 95.17 8 Adam 0.000 1 32 50 95.15 表 4 不同网络结构对预测性能的影响
Table 4 Effects of different network structures on prediction performance
% 模型名称 准确率A 精度P 召回率R F1 ResNet50 93.02 93.24 89.17 91.16 SE-ResNet50 94.64 94.81 94.71 94.76 PCSCNet 95.55 93.42 96.19 94.79 表 5 模型在测试集上的性能表现
Table 5 Performance of the model on the test set %
模型名称 准确率A 精度P 召回率R F1 VGG16 90.28 88.50 92.80 90.60 ResNet50 93.02 93.24 89.17 91.16 InceptionNetV3 94.59 91.28 97.16 94.27 PCSCNet 95.55 93.42 96.19 94.79 AlexNet-trans 94.60 80.00 94.10 86.48 -
[1] 陈健, 苏金花, 张毅梅. 《中国制造2025》与先进焊接工艺及装备发展[J]. 焊接, 2016(3): 1 − 5. doi: 10.3969/j.issn.1001-1382.2016.03.001 Chen Jian, Su Jinhua, Zhang Yimei. 《Made in China 2025》and the development of advanced welding technology and equipment[J]. Welding & Joining, 2016(3): 1 − 5. doi: 10.3969/j.issn.1001-1382.2016.03.001
[2] 忻建文, 吴东升, 李芳, 等. 小孔型等离子弧焊条形气孔形成机理[J]. 焊接学报, 2021, 42(12): 54 − 61,86. doi: 10.12073/j.hjxb.20210414003 Xin Jianwen, Wu Dongsheng, Li Fang, et al. Formation mechanism of strip porosity in small hole plasma arc welding[J]. Transactions of the China Welding Institution, 2021, 42(12): 54 − 61,86. doi: 10.12073/j.hjxb.20210414003
[3] 武传松, 赵晨昱, 贾传宝. 穿孔等离子弧焊接工艺研究进展[J]. 航空制造技术, 2015, 58(20): 34 − 39. Wu Chuansong, Zhao Chenyu, Jia Chuanbao. Research progress of piercing plasma arc welding process[J]. Aeronautical Manufacturing Technology, 2015, 58(20): 34 − 39.
[4] 何建萍, 吴鑫, 吉永丰, 等. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理[J]. 焊接学报, 2021, 42(6): 77 − 84. He Jianping, Wu Xin, Ji Yongfeng, et al. 100 μm forming mechanism of pulsed micro beam plasma arc welding of ultra-thin stainless steel plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 77 − 84.
[5] 李挺, 黄健康, 陈秀娟, 等. 旁路耦合微束等离子弧热特性及焊缝成形特点[J]. 焊接学报, 2018, 39(9): 55 − 60. Li Ting, Huang Jiankang, Chen Xiujuan, et al. Thermal characteristics and weld forming characteristics of bypass coupled micro beam plasma arc[J]. Transactions of the China Welding Institution, 2018, 39(9): 55 − 60.
[6] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7): 1921 − 1942. doi: 10.3969/j.issn.1001-3695.2014.07.001 Liu Jianwei, Liu Yuan, Luo Xionglin. Research progress of deep learning[J]. Application Research of Computers, 2014, 31(7): 1921 − 1942. doi: 10.3969/j.issn.1001-3695.2014.07.001
[7] 覃科, 刘晓刚, 丁立新. 基于卷积神经网络的CO2焊接熔池图像状态识别方法[J]. 焊接, 2017(6): 21 − 26. Tan Ke, Liu Xiaogang, Ding Lixin. State recognition method of CO2 welding pool image based on convolution neural network[J]. Welding & Joining, 2017(6): 21 − 26.
[8] 李海超, 刘景风, 谢吉兵, 等. 基于卷积神经网络的GTAW熔透预测[J]. 机械工程学报, 2019, 55(17): 22 − 28. doi: 10.3901/JME.2019.17.022 Li Haichao, Liu Jingfeng, Xie Jibing et al. GTAW penetration prediction based on convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(17): 22 − 28. doi: 10.3901/JME.2019.17.022
[9] Li C, Wang Q, Jiao W, et al. Deep learning-based detection of penetration from weld pool reflection images[J]. Welding Journal, 2020, 99(9): 239s − 245s. doi: 10.29391/2020.99.022
[10] 刘新锋. 基于正面熔池图像和深度学习算法的PAW穿孔/熔透状态预测[D]. 济南: 山东大学, 2017. Liu Xinfeng. Prediction of PAW perforation/penetration state based on frontal molten pool image and depth learning algorithm[D]. Jinan: Shandong University, 2017.
[11] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2015, doi: 10.48550/arXiv.1512.07108.
[12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770 − 778.
[13] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132 − 7141.
[14] He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Angeles, USA, 2019: 558 − 567.
[15] Han S, Jeff P, John T, et al. Learning both weights and connections for efficient neural networks[C]//NIPS'15: 28th International Conference on Neural Information Processing Systems. MIT Press Cambridge,USA,2015: 1135 − 1143.
[16] Pham H, Guan MY, Zoph B, et al. Efficient neural architecture search via parameters sharing[C]//International Conference on Machine Learning. PMLR, Stockholm, Sweden, 2018: 4095 − 4104.
[17] 吕国豪, 罗四维, 黄雅平, 等. 基于卷积神经网络的正则化方法[J]. 计算机研究与发展, 2014, 51(9): 1891 − 1900. doi: 10.7544/issn1000-1239.2014.20140266 Lyu Guohao, Luo Siwei, Huang Yaquan, et al. Regularization method based on convolution neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891 − 1900. doi: 10.7544/issn1000-1239.2014.20140266
[18] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 2818 − 2826.
[19] Jia C B, Liu X F, Zhang G K, et al. Penetration/keyhole status prediction and model visualization based on deep learning algorithm in plasma arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(11): 3577 − 3597.
[20] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]//IEEE International Conference on Computer Vision and Pattem Recognition. Hawaii, USA, 2017: 618 − 626.
-
期刊类型引用(3)
1. 胡继涛,马晓锋,赵荣丽,刘海生,王中任. 基于轻量级DeepLabV3+网络的焊接熔池图像分割方法. 计算机集成制造系统. 2025(01): 126-134 . 百度学术
2. 蒋凡,房世童,张国凯,陈树君,李天明,徐斌. VPPAW背面匙孔状态正面检测技术. 焊接学报. 2025(01): 8-14 . 本站查看
3. 王颖,高胜. 基于改进CeiT的GTAW焊接熔透状态识别方法. 焊接学报. 2024(04): 26-35+42+130-131 . 本站查看
其他类型引用(2)