Piezo-driven short-circuiting metal transfer in GMAW
-
摘要: 文中提出了一种基于压电致动器的高动态焊丝启停控制技术,压电致动器膨胀锁止焊丝,收缩则释放焊丝. 在焊丝锁止−释放过程中,可以主动驱动熔滴与熔池短路,并利用这一动态过程产生的惯性力驱动短路液桥断裂完成一次熔滴过渡. 研究结果表明,组合压电致动器的加入对于小电流下GMAW短路过渡有显著的改善,短路开始和结束都稳定可控,避免了随机短路的发生,不再依赖大短路电流强制缩颈液桥,短路过渡频率显著提升,在DCEP 100 A焊接电流下可达130 Hz,DCEN模式下由于阴极斑点爬升导致电弧稳定性较差,但短路过渡频率也可达100 Hz.Abstract: Gas metal arc welding (GMAW) is one of the most commonly used welding process. The strong coupling characteristics of its heat and mass transfer makes it difficult to produce stable droplet transfer under small current. This paper proposes a piezoelectric actuator based high dynamic wire lock-release control process, in which the piezoelectric actuator expands to lock the welding wire, and its contraction releases the wire. During the wire lock-release process, the droplet can be actively driven to short-circuit the molten pool, and the inertial force generated during this dynamic process can be used to actively neck and break the short-circuit liquid bridge. The research results show that the addition of the combined piezoelectric actuator can significantly improve the short-circuit transfer in GMAW under low current, and the start and end of the short-circuit are both stable and controllable, avoiding the occurrence of random short-circuits, and no longer relying on the rapid rising of short-circuit current to force the necking of the liquid bridge. The short-circuit transfer frequency is significantly improved, up to 130 Hz under DCEP 100 A welding current, and up to 100 Hz under DCEN mode.
-
-
表 1 压电驱动DCEP-GMA短路过渡试验参数
Table 1 Piezo-driven DCEP GMA short-circuit transfer experiment parameters
序号 焊接电流I/A 压电频率f/Hz 锁止时间t/ms 1 100 40 10 2 100 50 10 3 100 60 10 4 100 70 10 5 100 80 10 6 100 100 7.5 7 100 110 7.0 8 100 120 6.5 9 100 130 6.0 表 2 压电驱动DCEN-GMA短路过渡试验参数
Table 2 Piezo drive DCEN-GMA short-circuit transfer experiment parameters
序号 焊接电压U/V 压电频率f/Hz 锁止时间t/ms 10 22 40 10 11 22 50 10 12 22 60 10 13 22 100 9.5 -
[1] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112 − 224. doi: 10.1016/j.pmatsci.2017.10.001
[2] 熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 58(23): 80 − 85. doi: 10.16080/j.issn1671-833x.2015.23/24.080 Xiong Jiangtao, Geng Haibin, Lin Xin, et al. Research status of electric arc additive manufacturing and application prospects in aerospace manufacturing[J]. Aerospace Manufacturing Technology, 2015, 58(23): 80 − 85. doi: 10.16080/j.issn1671-833x.2015.23/24.080
[3] 从保强, 孙红叶, 彭鹏, 等. Al-6.3 CuAC-GTAW 电弧增材成形的气孔控制[J]. 稀有金属材料与工程, 2017, 46(5): 1359 − 1364. Cong Baoqiang, Sun Hongye, Peng Peng, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1359 − 1364.
[4] 黄丹, 朱志华, 耿海滨, 等. 5A06 铝合金 TIG 丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66 − 72. doi: 10.11868/j.issn.1001-4381.2015.000552 Huang Dan, Zhu Zhihua, Geng Haibin, et al. TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(3): 66 − 72. doi: 10.11868/j.issn.1001-4381.2015.000552
[5] Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012
[6] 贾剑平, 毕凯强, 刘丹, 等. 冷金属过渡技术的研究现状与展望[J]. 热加工工艺, 2015, 44(1): 6 − 8. doi: 10.14158/j.cnki.1001-3814.2015.01.002 Jia Jianping, Bi Kaiqiang, Liu Dan, et al. Research status and prospect of cold metal transfer[J]. Hot Working Technology, 2015, 44(1): 6 − 8. doi: 10.14158/j.cnki.1001-3814.2015.01.002
[7] 肖珺, 张广军, 陈树君, 等. 基于脉冲激光的GMAW熔滴过渡解耦控制[J]. 焊接学报, 2017, 38(6): 33 − 36. Xiao Jun, Zhang Guangjun, Chen Shujun, et al. Decoupling control of metal transfer in GMAW by pulsed laser irradiation[J]. Transactions of the China Welding Institution, 2017, 38(6): 33 − 36.
[8] Chen S J, Jia Y Z, Xiao J. Double-sided pulsed laser driven metal transfer in GMAW[J]. Journal of Manufacturing Processes, 2020, 49: 196 − 203. doi: 10.1016/j.jmapro.2019.09.023
[9] Zhang X, Gao H, Zhang G. Current-independent metal transfer by utilizing droplet resonance in gas metal arc welding[J]. Journal of Materials Processing Technology, 2020, 279: 116571. doi: 10.1016/j.jmatprotec.2019.116571
[10] Fan Y Y, Fan C L, Yang C L, et al. Research on short circuiting transfer mode of ultrasonic assisted GMAW method[J]. Science and Technology of Welding & Joining, 2012, 17(3): 186 − 191. doi: 10.1179/1362171811Y.0000000058
[11] Fan Y Y, Yang C L, Lin S B, et al. Ultrasonic wave assisted GMAW[J]. Welding Journal, 2012, 91(3): 91 − 99.
[12] Chen C, Fan C, Cai X, et al. Characteristics of arc and metal transfer in pulsed ultrasonic-assisted GMAW[J]. Welding Journal, 2020, 99(7): 203 − 208.
-
期刊类型引用(0)
其他类型引用(1)