高级检索

碳纤维增强复合材料与6061铝合金激光连接仿真

徐良, 谷世伟, 杨海锋, 宋坤林, 李康宁, 韩来慧

徐良, 谷世伟, 杨海锋, 宋坤林, 李康宁, 韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真[J]. 焊接学报, 2023, 44(11): 42-51. DOI: 10.12073/j.hjxb.20221212003
引用本文: 徐良, 谷世伟, 杨海锋, 宋坤林, 李康宁, 韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真[J]. 焊接学报, 2023, 44(11): 42-51. DOI: 10.12073/j.hjxb.20221212003
XU Liang, GU Shiwei, YANG Haifeng, SONG Kunlin, LI Kangning, HAN Laihui. Simulation study of laser joining of carbon fiber reinforced plastics and 6061 aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 42-51. DOI: 10.12073/j.hjxb.20221212003
Citation: XU Liang, GU Shiwei, YANG Haifeng, SONG Kunlin, LI Kangning, HAN Laihui. Simulation study of laser joining of carbon fiber reinforced plastics and 6061 aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 42-51. DOI: 10.12073/j.hjxb.20221212003

碳纤维增强复合材料与6061铝合金激光连接仿真

基金项目: 山东省重点研发计划项目“下一代列车轻量化关键技术和部件研发”(2021ZDPT02);国家重点研发计划项目“交通载运装备轻量化及高性能材料与结构技术”(2022YFB4300100)
详细信息
    作者简介:

    徐良,研究员;主要从事激光及激光电弧复合焊接技术研究;发表论文30余篇;Email:xuliang9811@163.com

  • 中图分类号: TG 404

Simulation study of laser joining of carbon fiber reinforced plastics and 6061 aluminum

  • 摘要:

    为研究碳纤维增强复合材料和铝合金搭接激光焊接过程的温度变化规律,文中以6061铝合金和碳纤维增强尼龙66复合材料(CF/PA66)为研究对象,建立了基于热传导的有限元模型,使用SYSWELD软件对两种材料搭接激光焊接过程进行数值模拟,并通过试验验证了模型的准确性;在此基础上研究了激光功率、焊接速度、搭接宽度、冷却条件、工装导热条件对接头温度场的影响规律;研究发现, CF/PA66树脂熔化区域随着激光功率的增大而增加,随冷却速度的增大而减小,同种工艺参数下材料搭接尺寸对界面树脂最大熔化宽度无影响,水冷条件能够显著降低CF/PA66树脂熔化量,导热材料热导率越大,对PA66树脂熔化量的降低作用越显著.

    Abstract:

    In order to study the temperature variation of the laser welding process of carbon fiber reinforced composite and aluminum alloy, this paper took 6061 aluminum alloy and carbon fiber reinforced Nylon 66 composite (CF/PA66) as the research object, established the finite element model based on heat conduction, and used SYSWELD software to conduct numerical simulation of the laser welding process of the two materials. The accuracy of the model was verified by experiments. On this basis, the influence laws of laser power, welding speed, lap width, cooling conditions and tooling thermal conductivity on the joint temperature field were studied. It is found that the size of aluminum alloy molten pool and the melting zone of PA66 resin increase with the increase of laser power and decrease with the increase of cooling rate. Under the same process parameters, the material lap size has no effect on the maximum melting width of interfacial resin. The water cooling condition can significantly reduce the melting pool size and the melting capacity of PA66 resin. The reduction of melt pool size and melting amount of PA66 resin is more significant.

  • 图  1   铝合金/CFRTP搭接激光焊接示意图

    Figure  1.   Schematics of laser welding of aluminum/CFRTP

    图  2   几何模型

    Figure  2.   Model of geometry

    图  3   有限元网格模型

    Figure  3.   Finite element mesh model. (a) contact interface; (b) overlap area

    图  4   搭接示意图

    Figure  4.   Diagram of lap joint

    图  5   6061铝合金热物理性能够参数

    Figure  5.   Thermal properties of 6061 aluminum alloy. (a) thermal conductivity; (b) specific heat

    图  6   导热块网格模型

    Figure  6.   Mesh model of heat conduction block

    图  7   冷却条件

    Figure  7.   Cooling condition. (a) air cooling; (b) water cooling

    图  8   实际焊缝形貌与有限元仿真结果对比

    Figure  8.   Comparison of experimental and finite element simulation

    图  9   焊缝横截面温度场云图

    Figure  9.   Temperature field of the cross-section of joint

    图  10   路径1上温度分布

    Figure  10.   Temperature distribution on the Path 1

    图  11   路径1上温度随时间变化

    Figure  11.   Temperature changes on the Path 1

    图  12   CFRTP表面实际熔化宽度与温度场云图对比

    Figure  12.   Comparison of actual melting width and temperature field nephogram of CFRTP surface

    图  13   不同激光功率下CFRTP上表面温度场云图

    Figure  13.   Temperature field of upper surface of CFRTP with varying laser power. (a) 400 W; (b) 450 W; (c) 500 W; (d) 550 W; (e) 600 W

    图  14   CFRTP熔化情况

    Figure  14.   Melting condition of CFRTP. (a) melting depth; (b) decomposition depth; (c) decomposition depth ratio

    图  15   不同焊接速度下CFRTP上表面温度场云图

    Figure  15.   Temperature field of upper surface of CFRTP with varying welding speed. (a) 3 mm/s; (b) 5 mm/s; (c) 7 mm/s; (d) 9 mm/s; (e) 11 mm/s; (f) 13 mm/s

    图  16   CFRTP熔化情况

    Figure  16.   Melting condition of CFRTP. (a) melting depth; (b) decomposition depth; (c) decomposition depth ratio

    图  17   不同搭接宽度下CFRTP上表面温度场云图

    Figure  17.   Temperature field of upper surface of CFRTP with varying lap width. (a) 25 mm; (b) 30 mm; (c) 35 mm

    图  18   不同冷却条件下CFRTP上表面温度场云图

    Figure  18.   Temperature field of upper surface of CFRTP with varying cooling condition. (a) air cooling; (b) water cooling

    图  19   不同导热条件下CFRTP上表面温度场云图

    Figure  19.   Temperature field of upper surface of CFRTP with different thermal conductivity condition. (a) without fixture; (b) T2; (c) 6061; (d) Q345

    图  20   距CFRTP上表面0.05 mm厚度处温度循环曲线

    Figure  20.   Temperature cycle curve at 0.05 mm thickness from the upper surface of CFRTP

    表  1   CFRTP热物性参数

    Table  1   Thermal properties of CFRTP

    材料比热c/(J∙kg−1∙K−1)热导率λ/(W∙m−1∙K−1)
    PA661.6720.2
    CF1.766.5
    下载: 导出CSV

    表  2   3种材料热导率 (W∙m−1∙K−1)

    Table  2   Thermal conductivity of three materials

    温度T/℃T26061Q345
    2539715446
    10038015846
    20036716345
    30035516443
    40034916741
    50034517038
    下载: 导出CSV

    表  3   工艺参数

    Table  3   Welding parameters

    序号激光功率
    P/W
    焊接速度
    v/(mm∙s−1)
    搭接宽度
    d/mm
    冷却
    条件
    导热
    1400525空冷
    2450525空冷
    3500525空冷
    4550525空冷
    5600525空冷
    6500325空冷
    7500525空冷
    8500725空冷
    9500925空冷
    105001125空冷
    115001325空冷
    12500530空冷
    13500535空冷
    14500525水冷
    15500525空冷T2
    16500525空冷6061
    17500525空冷Q345
    下载: 导出CSV

    表  4   不同导热条件下CFRTP熔化情况

    Table  4   Melting condition of CFRTP at different thermal conductivity condition

    导热条件熔化深度
    H1/mm
    分解深度
    H2/mm
    分解深度占比
    A(%)
    无导热块0.310.1135.5
    T20.150.016.7
    60610.180.0316.7
    Q3450.190.0421.1
    下载: 导出CSV
  • [1]

    El-Hofy M H, El-Hofy H. Laser beam machining of carbon fiber reinforced composites: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 9(12): 101.

    [2]

    Jian L, Zhang K, Yuan L, et al. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints [J]. Tribology International, 2013, 93.

    [3] 徐洁洁, 王栋, 肖荣诗, 等. 纤维增强热塑性树脂复合材料与激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73 − 86.

    Xu Jjejie, Wang Dong, Xiao Rongshi, et al. Laser joining of fiber reinforced thermoplastic composites and metal[J]. Transactions of the China Welding Institution, 2021, 42(10): 73 − 86.

    [4] 王强. 碳纤热塑复合材料/不锈钢激光连接实验与数值模拟研究[D]. 宁波, 宁波大学, 2017

    Wang Qiang. Experimental study and numerical simulation on CFRTP/stainless steel laser direct joining[D]. Ningbo, Ningbo University, 2017.

    [5] 王强, 焦俊科, 王飞亚, 等. CFRP与不锈钢激光焊接的有限元分析[J]. 激光技术, 2016, 40(6): 853 − 859. doi: 10.7510/jgjs.issn.1001-3806.2016.06.017

    Wang Qiang, Jiao Junke, Wang Feiya, et al. Finite element analysis of CFRP and stainless steel laser welding[J]. Laser Technology, 2016, 40(6): 853 − 859. doi: 10.7510/jgjs.issn.1001-3806.2016.06.017

    [6]

    Jiao J, Xu Z, Wang Q, et al. CFRTP and stainless laser joining: Thermal defects analysis and joining parameters optimization[J]. Optics & Laser Technology, 2018, 103; 170-176.

    [7]

    Jiao Junke, Jia Shaohui, Xu Zifa, et al. Laser direct joining of CFRTP and aluminum alloy with a hybrid surface pre-treating method[J]. Composites Part B Engineering, 2019.

    [8]

    Jiao J, Xu Z, Wang Q, et al. Research on carbon fiber reinforced thermal polymer/stainless steel laser direct joining[J]. Journal of Laser Applications, 2018, 30(3): 032419.

    [9] 贾少辉. 热塑碳纤复合材料与铝合金激光搅拌焊接技术研究[D]. 南昌, 南昌大学, 2020.

    Jiao Shaohui. Study on Laser Stir Welding Technology of Carbon Fiber Reinforced Thermal Polymers and Aluminum Alloy[D]. Nanchang, Nanchang University, 2020.

    [10] 李云. 基于表面刻蚀的铝合金与CFRTP/激光连接技术研究[D]. 南京, 南京航空航天大学, 2020.

    Li Yun. Research on Laser Joining Technology of Aluminum Alloy and CFRTP Based on Surface Etching[D]. Nanjin, Nanjing University of Aeronautics and Astronautics, 2020.

    [11]

    Hussein F L, Salloomi K N, Akman E, et al. Finite element thermal analysis for PMMA/st. 304 laser direct joining[J]. Optics & Laser Technology, 2017, 87: 64 − 71.

    [12] 黄创. 激光直接连接金属与聚合物的试验研究及数值模拟[D]. 镇江, 江苏大学, 2014

    Huang Chuang. Experimental study and numerical simulation of laser direct connection between metal and polymer[D]. Zhenjiang, Jiangsu University, 2014.

    [13] 黄怡洁. 不锈钢(304)与聚甲基丙烯酸甲酯(PMMA)异种材料激光焊接试验研究[D]. 广州, 广东工业大学, 2018.

    Huang Yijie. Study on the welding process of dissimilar materials stainless steel 304 and polyethylene methacrylate (PMMA) [D]. Guangzhou, Guangdong University of Technology, 2018.

    [14] 景若木, 徐洁洁, 肖荣诗, 等. 碳纤维增强复合材料与钛合金激光连接仿真[J]. 中国激光, 2023, 50(8): 0802101. doi: 10.3788/CJL221001

    Jing Ruomu, Xu Jiejie, Xiao Rongshi, et al. Simulation study of laser joining of carbon fiber reinforced plastics and titanium alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802101. doi: 10.3788/CJL221001

    [15] 赵朋成, 王璐璐, 李淑江, 等. 一种激光热传导钎焊的热源模型[J]. 焊接学报, 2011, 32(3): 13 − 16.

    Zhang Pengcheng, Wang Lulu, Li Shujiang, et al. A heat source model for laser heat-conduction brazing[J]. Transactions of the China Welding Institution, 2011, 32(3): 13 − 16.

    [16] 孟冬冬, 伍彦伟, 范彩连, 等. 基于体热源的激光透射焊接PA66温度场模拟[J]. 电子科技, 2016, 29(1): 17 − 21. doi: 10.16180/j.cnki.issn1007-7820.2016.01.005

    Meng Dongdong, Wu Yanwei, Fan Cailian, et al. Temperature field simulation of laser transmission welding PA66 based on volumetric heat source[J]. Journal of Electronic Science & Technology, 2016, 29(1): 17 − 21. doi: 10.16180/j.cnki.issn1007-7820.2016.01.005

    [17] 江旭东, 黄俊, 周琦, 等. 铝-铜异种材料对接搅拌摩擦焊温度场数值模拟[J]. 焊接学报, 2018, 39(3): 16 − 20. doi: 10.12073/j.hjxb.2018390060

    Jiang Xudong, Huang Jun, Zhou Qi, et al. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. Transactions of the China Welding Institution, 2018, 39(3): 16 − 20. doi: 10.12073/j.hjxb.2018390060

    [18] 韩涛, 谷世伟, 徐良, 等. K-TIG焊接接头的应力与变形研究[J]. 焊接学报, 2019, 40(11): 125 − 132. doi: 10.12073/j.hjxb.2019400299

    Han Tao, Gu Shiwei, Xu Liang, et al. Study on stress and deformation of K-TIG welded joint[J]. Transactions of the China Welding Institution, 2019, 40(11): 125 − 132. doi: 10.12073/j.hjxb.2019400299

    [19]

    Qian W, Tao H A, Hw A, et al. Burn-through prediction during in-service welding based on residual strength and high-temperature plastic failure criterion[J]. International Journal of Pressure Vessels and Piping, 2021, 189(9): 104280.

图(20)  /  表(4)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  53
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 网络出版日期:  2023-08-07
  • 刊出日期:  2023-11-29

目录

    /

    返回文章
    返回