Simulation study of laser joining of carbon fiber reinforced plastics and 6061 aluminum
-
摘要:
为研究碳纤维增强复合材料和铝合金搭接激光焊接过程的温度变化规律,文中以6061铝合金和碳纤维增强尼龙66复合材料(CF/PA66)为研究对象,建立了基于热传导的有限元模型,使用SYSWELD软件对两种材料搭接激光焊接过程进行数值模拟,并通过试验验证了模型的准确性;在此基础上研究了激光功率、焊接速度、搭接宽度、冷却条件、工装导热条件对接头温度场的影响规律;研究发现, CF/PA66树脂熔化区域随着激光功率的增大而增加,随冷却速度的增大而减小,同种工艺参数下材料搭接尺寸对界面树脂最大熔化宽度无影响,水冷条件能够显著降低CF/PA66树脂熔化量,导热材料热导率越大,对PA66树脂熔化量的降低作用越显著.
-
关键词:
- 激光焊接 /
- 6061铝合金 /
- 碳纤维增强尼龙66复合材料 /
- 数值模拟
Abstract:In order to study the temperature variation of the laser welding process of carbon fiber reinforced composite and aluminum alloy, this paper took 6061 aluminum alloy and carbon fiber reinforced Nylon 66 composite (CF/PA66) as the research object, established the finite element model based on heat conduction, and used SYSWELD software to conduct numerical simulation of the laser welding process of the two materials. The accuracy of the model was verified by experiments. On this basis, the influence laws of laser power, welding speed, lap width, cooling conditions and tooling thermal conductivity on the joint temperature field were studied. It is found that the size of aluminum alloy molten pool and the melting zone of PA66 resin increase with the increase of laser power and decrease with the increase of cooling rate. Under the same process parameters, the material lap size has no effect on the maximum melting width of interfacial resin. The water cooling condition can significantly reduce the melting pool size and the melting capacity of PA66 resin. The reduction of melt pool size and melting amount of PA66 resin is more significant.
-
-
表 1 CFRTP热物性参数
Table 1 Thermal properties of CFRTP
材料 比热c/(J∙kg−1∙K−1) 热导率λ/(W∙m−1∙K−1) PA66 1.672 0.2 CF 1.76 6.5 表 2 3种材料热导率 (W∙m−1∙K−1)
Table 2 Thermal conductivity of three materials
温度T/℃ T2 6061 Q345 25 397 154 46 100 380 158 46 200 367 163 45 300 355 164 43 400 349 167 41 500 345 170 38 表 3 工艺参数
Table 3 Welding parameters
序号 激光功率
P/W焊接速度
v/(mm∙s−1)搭接宽度
d/mm冷却
条件导热 1 400 5 25 空冷 无 2 450 5 25 空冷 无 3 500 5 25 空冷 无 4 550 5 25 空冷 无 5 600 5 25 空冷 无 6 500 3 25 空冷 无 7 500 5 25 空冷 无 8 500 7 25 空冷 无 9 500 9 25 空冷 无 10 500 11 25 空冷 无 11 500 13 25 空冷 无 12 500 5 30 空冷 无 13 500 5 35 空冷 无 14 500 5 25 水冷 无 15 500 5 25 空冷 T2 16 500 5 25 空冷 6061 17 500 5 25 空冷 Q345 表 4 不同导热条件下CFRTP熔化情况
Table 4 Melting condition of CFRTP at different thermal conductivity condition
导热条件 熔化深度
H1/mm分解深度
H2/mm分解深度占比
A(%)无导热块 0.31 0.11 35.5 T2 0.15 0.01 6.7 6061 0.18 0.03 16.7 Q345 0.19 0.04 21.1 -
[1] El-Hofy M H, El-Hofy H. Laser beam machining of carbon fiber reinforced composites: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 9(12): 101.
[2] Jian L, Zhang K, Yuan L, et al. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints [J]. Tribology International, 2013, 93.
[3] 徐洁洁, 王栋, 肖荣诗, 等. 纤维增强热塑性树脂复合材料与激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73 − 86. Xu Jjejie, Wang Dong, Xiao Rongshi, et al. Laser joining of fiber reinforced thermoplastic composites and metal[J]. Transactions of the China Welding Institution, 2021, 42(10): 73 − 86.
[4] 王强. 碳纤热塑复合材料/不锈钢激光连接实验与数值模拟研究[D]. 宁波, 宁波大学, 2017 Wang Qiang. Experimental study and numerical simulation on CFRTP/stainless steel laser direct joining[D]. Ningbo, Ningbo University, 2017.
[5] 王强, 焦俊科, 王飞亚, 等. CFRP与不锈钢激光焊接的有限元分析[J]. 激光技术, 2016, 40(6): 853 − 859. doi: 10.7510/jgjs.issn.1001-3806.2016.06.017 Wang Qiang, Jiao Junke, Wang Feiya, et al. Finite element analysis of CFRP and stainless steel laser welding[J]. Laser Technology, 2016, 40(6): 853 − 859. doi: 10.7510/jgjs.issn.1001-3806.2016.06.017
[6] Jiao J, Xu Z, Wang Q, et al. CFRTP and stainless laser joining: Thermal defects analysis and joining parameters optimization[J]. Optics & Laser Technology, 2018, 103; 170-176.
[7] Jiao Junke, Jia Shaohui, Xu Zifa, et al. Laser direct joining of CFRTP and aluminum alloy with a hybrid surface pre-treating method[J]. Composites Part B Engineering, 2019.
[8] Jiao J, Xu Z, Wang Q, et al. Research on carbon fiber reinforced thermal polymer/stainless steel laser direct joining[J]. Journal of Laser Applications, 2018, 30(3): 032419.
[9] 贾少辉. 热塑碳纤复合材料与铝合金激光搅拌焊接技术研究[D]. 南昌, 南昌大学, 2020. Jiao Shaohui. Study on Laser Stir Welding Technology of Carbon Fiber Reinforced Thermal Polymers and Aluminum Alloy[D]. Nanchang, Nanchang University, 2020.
[10] 李云. 基于表面刻蚀的铝合金与CFRTP/激光连接技术研究[D]. 南京, 南京航空航天大学, 2020. Li Yun. Research on Laser Joining Technology of Aluminum Alloy and CFRTP Based on Surface Etching[D]. Nanjin, Nanjing University of Aeronautics and Astronautics, 2020.
[11] Hussein F L, Salloomi K N, Akman E, et al. Finite element thermal analysis for PMMA/st. 304 laser direct joining[J]. Optics & Laser Technology, 2017, 87: 64 − 71.
[12] 黄创. 激光直接连接金属与聚合物的试验研究及数值模拟[D]. 镇江, 江苏大学, 2014 Huang Chuang. Experimental study and numerical simulation of laser direct connection between metal and polymer[D]. Zhenjiang, Jiangsu University, 2014.
[13] 黄怡洁. 不锈钢(304)与聚甲基丙烯酸甲酯(PMMA)异种材料激光焊接试验研究[D]. 广州, 广东工业大学, 2018. Huang Yijie. Study on the welding process of dissimilar materials stainless steel 304 and polyethylene methacrylate (PMMA) [D]. Guangzhou, Guangdong University of Technology, 2018.
[14] 景若木, 徐洁洁, 肖荣诗, 等. 碳纤维增强复合材料与钛合金激光连接仿真[J]. 中国激光, 2023, 50(8): 0802101. doi: 10.3788/CJL221001 Jing Ruomu, Xu Jiejie, Xiao Rongshi, et al. Simulation study of laser joining of carbon fiber reinforced plastics and titanium alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802101. doi: 10.3788/CJL221001
[15] 赵朋成, 王璐璐, 李淑江, 等. 一种激光热传导钎焊的热源模型[J]. 焊接学报, 2011, 32(3): 13 − 16. Zhang Pengcheng, Wang Lulu, Li Shujiang, et al. A heat source model for laser heat-conduction brazing[J]. Transactions of the China Welding Institution, 2011, 32(3): 13 − 16.
[16] 孟冬冬, 伍彦伟, 范彩连, 等. 基于体热源的激光透射焊接PA66温度场模拟[J]. 电子科技, 2016, 29(1): 17 − 21. doi: 10.16180/j.cnki.issn1007-7820.2016.01.005 Meng Dongdong, Wu Yanwei, Fan Cailian, et al. Temperature field simulation of laser transmission welding PA66 based on volumetric heat source[J]. Journal of Electronic Science & Technology, 2016, 29(1): 17 − 21. doi: 10.16180/j.cnki.issn1007-7820.2016.01.005
[17] 江旭东, 黄俊, 周琦, 等. 铝-铜异种材料对接搅拌摩擦焊温度场数值模拟[J]. 焊接学报, 2018, 39(3): 16 − 20. doi: 10.12073/j.hjxb.2018390060 Jiang Xudong, Huang Jun, Zhou Qi, et al. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. Transactions of the China Welding Institution, 2018, 39(3): 16 − 20. doi: 10.12073/j.hjxb.2018390060
[18] 韩涛, 谷世伟, 徐良, 等. K-TIG焊接接头的应力与变形研究[J]. 焊接学报, 2019, 40(11): 125 − 132. doi: 10.12073/j.hjxb.2019400299 Han Tao, Gu Shiwei, Xu Liang, et al. Study on stress and deformation of K-TIG welded joint[J]. Transactions of the China Welding Institution, 2019, 40(11): 125 − 132. doi: 10.12073/j.hjxb.2019400299
[19] Qian W, Tao H A, Hw A, et al. Burn-through prediction during in-service welding based on residual strength and high-temperature plastic failure criterion[J]. International Journal of Pressure Vessels and Piping, 2021, 189(9): 104280.