高级检索

铝合金表面电弧喷涂Ag基涂层及其低温钎焊行为

肖勇, 程钊, 周建军, 张建, 罗丹, 李明雨

肖勇, 程钊, 周建军, 张建, 罗丹, 李明雨. 铝合金表面电弧喷涂Ag基涂层及其低温钎焊行为[J]. 焊接学报, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003
引用本文: 肖勇, 程钊, 周建军, 张建, 罗丹, 李明雨. 铝合金表面电弧喷涂Ag基涂层及其低温钎焊行为[J]. 焊接学报, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003
XIAO Yong, CHENG Zhao, ZHOU Jianjun, ZHANG Jian, LUO Dan, LI Mingyu. Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003
Citation: XIAO Yong, CHENG Zhao, ZHOU Jianjun, ZHANG Jian, LUO Dan, LI Mingyu. Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003

铝合金表面电弧喷涂Ag基涂层及其低温钎焊行为

基金项目: 国家重点研发计划资助项目(2021YFB3802300)
详细信息
    作者简介:

    肖勇,博士,副教授,博士研究生导师;主要研究方向为钎焊材料及理论、材料特种连接技术; Email: yongxiao@whut.edu.cn

  • 中图分类号: TG 454

Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior

  • 摘要: 在波导器件中,铝合金壳体较差的润湿性制约了其与微带电路板之间大面积、可靠低温钎焊连接. 通过电弧喷涂技术在5A06铝合金表面制备了厚度约为80 μm的Ag-15%Ni(质量分数)单一涂层和Ni-5%Al/Ag-15%Ni(质量分数)复合涂层,以提升Sn-Pb钎料在其表面的润湿性. 对比研究了两种涂层的显微结构、涂层界面结合性能、低温钎焊行为及钎焊接头剪切失效机制. 结果表明,涂层与铝合金基板间形成了良好的界面结合,并且两种涂层均具有较好的低温焊接性. 其中,Ag-15%Ni单一涂层与铝合金基板的结合强度为40 MPa,喷涂后铝合金基板与T2紫铜形成的钎焊接头抗剪强度为26 MPa. 相较而言,Ni-5%Al /Ag-15%Ni复合涂层展现出更佳的涂层结合强度(42 MPa)和钎焊接头抗剪强度(31 MPa).
    Abstract: In waveguide devices, large-area and reliable low-temperature soldering bonding between the aluminum alloy shell and the microstrip circuit board were difficult because of the poor wettability of the Al alloy. In this study, Ag-15%Ni coating layer and Ni-5%Al/Ag-15%Ni composite coating layers with a thickness approximately of 80 μm were prepared on the surface of 5A06 Al alloy by arc spraying technology to improve the wettability of Sn-Pb alloy solder on the Al alloy surface. Comparable studies were performed on the microstructure, interfacial bonding behavior, low-temperature soldering behavior of the two kinds of coating layers, and the shearing failure mechanism of joints were investigated. Results showed that sound interfacial bonding was realized between the coating layer and the Al alloy substrate. Moreover, the two kinds of coating layers both exhibited good solderability at low-temperature. The bonding strength between the Ag-15%Ni coating layer and the Al alloy substrate was 40 MPa, and the shear strength of the soldering joint formed by the sprayed aluminum alloy substrate and T2 copper was 26 MPa. While, the Ni-5%Al/Ag-15%Ni composite coatings exhibited better bonding strength with the Al alloy substrate (42 MPa) and higher shear strength of the soldering joint (31 MPa) than the Ag-15%Ni single coating layer.
  • 图  1   Ag-15Ni涂层形貌

    Figure  1.   Morphology of the Ag-15Ni coating. (a) macroscopic morphology; (b) micromorphology

    图  2   Ag-15Ni涂层表面XRD衍射图谱

    Figure  2.   XRD diffraction pattern of the Ag-15Ni coating layer surface

    图  3   Ag-15Ni涂层与铝基板界面处的元素线分布

    Figure  3.   Elemental line distribution image at the interface between Ag-15Ni coating layer and Al substrate

    图  4   Ni-5Al涂层形貌

    Figure  4.   Morphology of the Ni-5Al coating layer. (a) macroscopic morphology; (b) micromorphology

    图  5   Ni-5Al涂层表面XRD衍射图谱

    Figure  5.   XRD diffraction pattern of the Ni-5Al coating layer surface

    图  6   Ni-5Al涂层与铝基板界面处的元素线扫描结果

    Figure  6.   Element line scanning results at the interface between Ni-5Al coating layer and Al substrate

    图  7   Ni-5Al/Ag-15Ni复合涂层形貌

    Figure  7.   Micromorphology of Ni-5Al/Ag-15Ni composite coating layer

    图  8   Ni-5Al/Ag-15Ni复合涂层与铝基板界面处元素线扫描结果

    Figure  8.   Element line scanning results at the interface between Ni-5Al/Ag-15Ni composite coating layer and Al substrate

    图  9   两种涂层的结合强度

    Figure  9.   Bonding strength of the two coating layers

    图  10   不同涂层界面处SEM图

    Figure  10.   SEM images of the coating layer interfaces. (a) Ag-15Ni/Al substrate; (b) Ni-5Al/Al substrate; (c) Ni-5Al/Ag-15Ni

    图  11   涂层的断口形貌

    Figure  11.   Fracture morphology of the coating layers. (a) Ag-15Ni single coating layer; (b) Ni-5Al/Ag-15Ni composite coating layer

    图  12   不同涂层钎焊接头的截面显微图

    Figure  12.   Cross-section micrographs of the soldered joints with different coating layers. (a) Ag-15Ni single coating layer; (b) Ni-5Al/Ag-15Ni composite coating layer

    图  13   不同涂层钎焊接头的抗剪强度

    Figure  13.   Shear strength of soldered joints with different coating layers

    图  14   不同涂层钎焊接头剪切断口截面形貌

    Figure  14.   Cross-section images of shearing failed joints with different coating layers. (a) Ag-15Ni single coating layer; (b) Ni-5Al/Ag-15Ni composite coating layers

    表  1   涂层的制备参数

    Table  1   Preparation parameters of the coatings

    涂层类型电弧喷涂
    丝材
    喷涂电压
    U/V
    喷涂电流
    I/A
    喷枪移动速度
    v/(m·min−1)
    喷枪口到工件
    距离S/cm
    气体压力
    P/MPa
    气源
    类型
    Ag-15Ni单一涂层Ag-15Ni3428010150.6纯N2
    Ni-5Al/Ag-15Ni
    复合涂层
    Ni-5Al3415010180.6纯N2
    Ag-15Ni3428012150.6纯N2
    下载: 导出CSV

    表  2   Ag-15Ni涂层内局部位置的元素含量(原子分数, %)

    Table  2   Elemental compositions in local positions inside the Ag-15Ni coating layer

    测试点NiAlAgO
    197.362.64
    27.2792.73
    下载: 导出CSV

    表  3   Ni-5Al涂层内部局部位置的元素含量(原子分数, %)

    Table  3   Elemental compositions in local positions inside the Ni-5Al coating layer

    测试点NiAlAgO
    113.5956.2830.13
    288.3111.69
    下载: 导出CSV

    表  4   Ni-5Al/Ag-15Ni复合涂层内部局部位置的元素含量 (原子分数, %)

    Table  4   Elemental compositions in local positions inside the Ni-5Al/Ag-15Ni composite coating layer

    测试点NiAlAgO
    121.8578.15
    28.8091.20
    下载: 导出CSV

    表  5   不同涂层钎焊接头中局部位置的元素含量(原子分数,%)

    Table  5   Elemental compositions in local positions inside the soldered joints with different coating layer

    测试点NiCuAgSnPb主要物相
    166.0231.572.41Ag3Sn
    26.9941.6644.746.61(Cu,Ni)6Sn5
    376.1623.84Ag3Sn
    473.5526.45Ag3Sn
    537.5762.43Sn-Pb过共晶
    下载: 导出CSV
  • [1] 苑博. 微带天线大面积钎焊技术研究[J]. 焊接技术, 2019, 48(4): 39 − 41,47. doi: 10.13846/j.cnki.cn12-1070/tg.2019.04.011

    Yuan Bo. Research on large-area brazing technology of microstrip antenna[J]. Welding Technology, 2019, 48(4): 39 − 41,47. doi: 10.13846/j.cnki.cn12-1070/tg.2019.04.011

    [2]

    Zbigniew M, Ireneusz C, Tomasz W. Soldering of 7075 aluminum alloy using Ni-P and Cu-Cr electrodeposited interlayers[J]. Materials, 2020, 13(18): 4100. doi: 10.3390/ma13184100

    [3] 杨波, 田修波, 巩春志. 铝合金表面磁控溅射Cu膜的镀制及其低温钎焊性能研究[J]. 真空科学与技术学报, 2014, 34(2): 153 − 157. doi: 10.3969/j.issn.1672-7126.2014.02.11

    Yang Bo, Tian Xiubo, Gong Chunzhi. Low temperature soldering of Al alloy modified with sputtered and ion implanted Cu coatings[J]. Chinese Journal of Vacuum Sciense and Technology, 2014, 34(2): 153 − 157. doi: 10.3969/j.issn.1672-7126.2014.02.11

    [4]

    Guo K, Liu Y, Gou G, et al. Electroplating and brazing joining of 5083 aluminum alloy to CFRP[J]. International Journal of Modern Physics B, 2019, 33(1-3): 1940044.

    [5] 皇倩. 铝合金表面高性能涂层的制备与性能研究[D]. 北京: 北京大学, 2019.

    Huang Qian. Preparation and properties of high-performance coating on aluminum alloy[D]. Beijing: Peking University, 2019.

    [6] 李文亚, 曹聪聪, 杨夏炜, 等. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53 − 63. doi: 10.11868/j.issn.1001-4381.2019.000262

    Li Wenya, Cao Congcong, Yang Xiawei, et al. Cold spraying hybrid processing technology and its application[J]. Journal of Materials Engineering, 2019, 47(11): 53 − 63. doi: 10.11868/j.issn.1001-4381.2019.000262

    [7] 聂海杰, 李红, 龙伟民, 等. 采用冷喷涂铜涂层做中间层的镁合金与钢共晶接触反应钎焊工艺及接头性能[J]. 焊接学报, 2016, 37(7): 83 − 87.

    Nie Haijie, Li Hong, Long Weimin, et al. Brazing process and jointproperties of eutectic contact reaction between magnesium alloyand steel using cold sprayed copper coating as the intermediatelayer[J]. Transactions of the China Welding Institution, 2016, 37(7): 83 − 87.

    [8]

    Tomasz W, Paweł S, Leszek Ł, et al. Application of plasma sprayed Cu intermediate layers in the soldering process of graphite composite to 6060 aluminum alloy[J]. Materials, 2020, 13(22): 5114. doi: 10.3390/ma13225114

    [9] 刘正卫. 电弧喷涂锌铝涂层工艺参数优化及性能研究[D]. 广州: 广东工业大学, 2019.

    Liu Zhengwei. Study on process parameters and optimization andpropertis of arc spraying zinc-aluminium coating[D]. Guangzhou: Guangdong University of Technology, 2019.

    [10] 李长久. 热喷涂技术应用及研究进展与挑战[J]. 热喷涂技术, 2018, 10(4): 1 − 22. doi: 10.3969/j.issn.1674-7127.2018.04.001

    Li Changjiu. Applications, research progresses and future challenges of thermal spray technology[J]. Thermal Spray Technology, 2018, 10(4): 1 − 22. doi: 10.3969/j.issn.1674-7127.2018.04.001

    [11]

    Li Q, Song P, Ji Q, et al. Microstructure and wear performance of arc-sprayed Al/316L stainless-steel composite coating[J]. Surface & Coatings Technology, 2019, 374: 189 − 200.

    [12]

    Kim J-K, Xavier F-A, Kim D-E. Tribological properties of twin wire arc spray coated aluminum cylinder liner[J]. Materials & Design, 2015, 84: 231 − 237.

    [13]

    Naimi A, Yousfi H, Trari M. Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy[J]. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48(5): 557 − 562. doi: 10.1134/S2070205112050061

    [14] 陈永雄, 梁秀兵, 程江波, 等. 异质双丝电弧喷涂制备复合涂层的工艺优化[J]. 焊接学报, 2019, 40(2): 38 − 41.

    Chen Yongxiong, Liang Xiubing, Cheng Jiangbo, et al. Process optimization of a hybrid twin-wire arc sprayed composite coating[J]. Transactions of the China Welding Institution, 2019, 40(2): 38 − 41.

    [15] 吴铭方, 司乃潮, 陈健. 铝/镀银层/钢的扩散钎焊及界面化合物的生长行为[J]. 中国有色金属学报, 2010, 20(6): 1209 − 1213. doi: 10.19476/j.ysxb.1004.0609.2010.06.027

    Wu Mingfang, Si Naichao, Chen Jian. Diffusion brazing of Al/Ag plating layer/steel and growth behavior of interface compound[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1209 − 1213. doi: 10.19476/j.ysxb.1004.0609.2010.06.027

    [16]

    Luo X, Smith G M, Sampath S. On the interplay between adhesion strength and tensile properties of thermal spray coated laminates—Part I: high velocity thermal spray coatings[J]. Journal of Thermal Spray Technology, 2018, 27(3): 296 − 307. doi: 10.1007/s11666-018-0695-1

    [17]

    Wang J X, Wang G X, Liu J S, et al. Microstructure of Ni–Al powder and Ni–Al composite coatings prepared by twin-wire arc spraying[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(7): 810 − 818. doi: 10.1007/s12613-016-1295-z

    [18]

    Wang J X, Liu J S, Zhang L Y, et al. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(5): 469 − 478. doi: 10.1007/s12613-014-0931-8

    [19]

    Li J F, Agyakwa P A, Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process[J]. Acta Materialia, 2010, 58(9): 3429 − 3443. doi: 10.1016/j.actamat.2010.02.018

  • 期刊类型引用(4)

    1. 朱清清,张津超,王恒,曹宇鹏,苏波泳,花国然. 开放环境下钛合金激光熔覆的表面色差模型研究. 表面技术. 2024(07): 156-163+199 . 百度学术
    2. 宣鹏举,张淑婷,唐卫岗,欧阳佩旋,张涛,唐紫苑. 铜磷钎料热加工过程表观变色机理研究. 有色金属工程. 2022(03): 24-31 . 百度学术
    3. 刘晓芳,张冠星,常云峰,王蒙,钟素娟. 干燥过滤器焊后泄露原因. 焊接. 2021(10): 34-37+62-63 . 百度学术
    4. 刘亦贤,陈永,李书珍,蔡国磊,赵晨,李国鹏,戴谷川. 铜磷钎料对钎焊性能影响的研究进展. 热加工工艺. 2020(23): 1-7 . 百度学术

    其他类型引用(0)

图(14)  /  表(5)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  50
  • PDF下载量:  74
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-12-07
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回