Effect of welding wire composition on microstucture and properties on Al/Cu laser welding-brazing joints
-
摘要: 通过添加Zn-Al焊丝成功实现了2A16铝合金/T2铜异种材料的激光熔钎焊连接,并采用扫描电子显微镜和能谱仪对接头的微观组织进行表征,同时,研究了Zn-2%Al,Zn-5%Al和Zn-10%Al 3种焊丝对接头成形、微观组织以及力学性能的影响.结果表明,铝/铜激光熔钎焊接头主要由CuZn相,Al2Cu相,Al4Cu9相,CuZn5相,α-Al固溶体、β-Zn固溶体以及α-Al + β-Zn共晶组织组成;随着焊丝中Zn含量的降低,熔融焊缝的润湿性能逐渐提高. 当Zn-10%Al焊丝作为填充金属时,界面元素扩散反应较为充分,界面层厚度逐渐增加至7.02 μm,界面层与焊缝组织形成“机械咬合”连接,提高了接头的力学性能,接头的抗拉强度最高可达204 MPa.铝/铜接头显微硬度从铜侧至铝合金侧呈现出先上升后下降的趋势,最高显微硬度出现在界面层处,可达330.1 HV.Abstract: The laser welding-brazing connection of 2A16 aluminum alloy and T2 copper was successfully realized by adding Zn-Al welding wire. The microstructure of the joints was characterized by the scanning electron microscope and energy dispersive spectrometer. Meanwhile, the effects of three kinds of welding wire of Zn-2%Al, Zn-5%Al and Zn-10%Al on the joint formation, microstructure and machanical properties were investigated. Results indicated that the Al/Cu laser welding-brazing joints was mainly composed of CuZn phase, Al2Cu phase, Al4Cu9 phase, CuZn5 phase, α-Al solid solution, β-Zn solid solution, and α-Al+β-Zn eutectic structure. The wettability of the molten metal was increased with the decrese of Zn content in the welding wire. When the Zn-10% Al wire was used as filler metal, the diffusion reaction at the interface was gradually sufficient, and the thickness of the interface layer gradually increased to 7.02 μm. The “mechanical occlusion” is formed between the welding zone and the interface layer, which improves the machanical properties of the joint. The maxmuim tensile strength is up to 204 MPa when Zn-10% Al welding wire is used. The microhardness from Cu side to Al alloy side of the Al/Cu joints is increased first and then decreased. The highest microhardness is occurred at interface layer, reaching 330.1 HV.
-
Keywords:
- welding-brazing /
- Zn-Al welding wire /
- wettability /
- mechanical occlusion /
- eutectic structure
-
-
位置 Zn-2%Al焊丝 Zn-5%Al焊丝 Zn-10%Al焊丝 Al Cu Zn 可能相 Al Cu Zn 可能相 Al Cu Zn 可能相 1 0 95.54 4.46 Cu 0 96.8 3.2 Cu 0 100 0 Cu 2 8.76 44.54 46.70 CuZn 15.78 42.12 42.10 CuZn 10.00 43.82 46.18 CuZn 3 60.07 30.64 9.29 Al2Cu 69.86 22.82 7.32 α-Al+Al2Cu 60.29 32.33 7.38 Al2Cu 4 64.27 9.46 26.26 α-Al 66.89 3.75 30.16 α-Al 30.32 68.30 1.38 Al4Cu9 5 16.44 3.35 80.21 β-Zn 21.70 2.69 75.61 β-Zn 10.97 15.22 73.81 CuZn5 6 43.77 10.76 45.47 α-Al+β-Zn 73.12 1.83 25.05 α-Al 41.23 6.85 51.92 α-Al+β-Zn -
[1] Lei Z R, Zhang X R, Liu J G, et al. Interfacial microstructure and reaction mechanism with various weld fillers on laser welding- brazing of Al/Cu lap joint[J]. Journal of Manufacturing Processes, 2021, 67: 226 − 240.
[2] 李志勇, 周利, 何至正, 等. 激光功率对铝/黄铜熔钎焊接头组织和性能的影响[J]. 中国有色金属学报, 2021, 31(3): 669 − 681. doi: 10.11817/j.ysxb.1004.0609.2021-35975 Li Zhiyong, Zhou Li, He Zhizheng, et al. Influence of laser power on microstructure and mechanical properties of Al/brass welding-brazing joints[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 669 − 681. doi: 10.11817/j.ysxb.1004.0609.2021-35975
[3] Zhou L, Li Z Y, Song X G, et al. Influence of laser offset on laser welding-brazing of Al/brass dissimilar alloys[J]. Journal of Alloys and Compounds, 2017, 717: 78 − 92.
[4] Niu Z, Ye Z, Huang J, et al. Interfacial structure and properties of Cu/Al joints brazed with Zn-Al filler metals[J]. Materials Characterization, 2018, 138(4): 78 − 88.
[5] 邓呈敏, 程东海, 张华, 等. 纵向直流磁场对铝铜熔钎焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003 Deng Chengmin, Cheng Donghai, Zhang Hua, et al. Effect of microstructure and mechanical properties on Al/Cu welding-brazing joint assisted by longitudinal DC magnetic field[J]. Transactions of the China Welding Institution, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003
[6] 窦程亮, 方远方, 张华, 等. 焊接速度对6082Al/T2Cu异种材料搅拌摩擦焊接头成形及性能的影响[J]. 有色金属工程, 2021, 11(1): 32 − 37. doi: 10.3969/j.issn.2095-1744.2021.01.005 Dou Chengliang, Fang Yuanfang, Zhang Hua, et al. Effect of welding speed on the microstructure and properties of friction stir welded 6082Al/T2Cu dissimilar materials[J]. Nonferrous Metals Engineering, 2021, 11(1): 32 − 37. doi: 10.3969/j.issn.2095-1744.2021.01.005
[7] 万秀莲, 王龙, 姚志文, 等. 铝/铜异种金属激光填丝熔钎焊工艺研究[J]. 稀有金属, 2019, 43(5): 494 − 499. Wan Xiulian, Wang Long, Yao Zhiwen, et al. Laser filling brazing technology of aluminum/copper dissimilar metals[J]. Chinese Journal of Rare Metals, 2019, 43(5): 494 − 499.
[8] 何凯, 胡德安, 陈益平, 等. 铝/铜异种材料激光焊焊缝形成机制[J]. 南昌航空大学学报(自然科学版), 2020, 34(1): 7 − 11, 20. He Kai, Hu Dean, Chen Yiping, et al. Formation mechanism of Al/Cu laser welding seam of dissimilar materials[J]. Journal of Nanchang Hangkong University:Social Sciences, 2020, 34(1): 7 − 11, 20.
[9] Schmalen P, Plapper P. Evolution of laser braze-welded dissimilar Al-Cu joints[J]. Physics Procedia, 2016, 83: 506 − 514.
[10] Zhou L, Luo L Y, Tan C W, et al. Effect of welding speed on microstructural evolution and mechanical properties of laser welded-brazed Al/brass dissimilar joints[J]. Optics and Laser Technology, 2018, 98: 234 − 246.
[11] Hailat M M, Mian A, Chaudhury Z A, et al. Laser micro-welding of aluminum and copper with and without tin foil alloy[J]. Microsystem Technologies, 2012, 18(1): 103 − 112. doi: 10.1007/s00542-011-1378-8
[12] Weigl M, Albert F, Schmidt M. Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials[J]. Physics Procedia, 2011, 12(5): 332 − 338.
[13] Feng J C, Liu Y B, Sun Q J, et al. Microstructures and properties of aluminum-copper lap-welded joints by cold metal transfer technology[J]. Advanced Engineering Materials, 2015, 17(10): 1480 − 1485. doi: 10.1002/adem.201400573