高级检索

复杂铝合金焊接结构的残余应力数值模拟分析

张月来, 彭章祝, 常茂椿, 胡龙, 潘国昌, 徐博

张月来, 彭章祝, 常茂椿, 胡龙, 潘国昌, 徐博. 复杂铝合金焊接结构的残余应力数值模拟分析[J]. 焊接学报, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
引用本文: 张月来, 彭章祝, 常茂椿, 胡龙, 潘国昌, 徐博. 复杂铝合金焊接结构的残余应力数值模拟分析[J]. 焊接学报, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
Citation: ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001

复杂铝合金焊接结构的残余应力数值模拟分析

详细信息
    作者简介:

    张月来,博士,高级工程师;主要从事轨道交通车辆制造材料及焊接技术研究工作;Email:zhangyuelai.zz@crrcgc.cc.

  • 中图分类号: TG 446+.1

Numerical simulation of residual stress in complex aluminum alloy welded structure

  • 摘要: 以SYSWELD有限元软件为平台,开发了基于瞬间热源的高效计算方法来模拟复杂铝合金结构的焊接残余应力. 首先以6061铝合金平板堆焊接头为研究对象,分别采用移动热源和瞬间热源计算接头的焊接残余应力,对比两者的计算结果验证瞬间热源法的有效性. 随后,将所开发的高效计算方法用于模拟6系铝合金复杂结构的焊接瞬态应力和残余应力,并将计算结果用于分析实际产品制造中开裂问题的原因,并提出了两种减缓和防止铝合金结构开裂的方案,即减小焊接热输入和增大开裂位置型材的板厚. 结果表明,铝合金结构在焊接生产制造过程中发生开裂是由该位置产生了高瞬态拉伸应力所致. 降低关键焊缝焊接热输入和增加型材板厚,均对结构开裂位置的瞬态焊接应力有一定程度的改善,且增加型材厚度的改善效果更好.
    Abstract: Based on SYSWELD finite element software, an efficient calculation method based on instantaneous heat source was developed to simulate the welding residual stress of complex aluminum alloy structures. Firstly, the moving heat source and instantaneous heat source were respectively used to simulate the residual stress of 6061 aluminum alloy plate surfacing welding joint and compared the results, which verified the effectiveness of the newly developed method. Subsequently, the developed efficient calculation method was used to simulate the welding transient stress and welding residual stress of 6 000 series aluminum alloy complex structure so as to analyze the causes of cracks generated in actual product manufacturing. The result shows that the high transient tensile stress is generated at this position during the welding process lead to cracking of the aluminum structure. The simulation result indicates that both solutions can improve the welding transient stress and residual stress to a certain extent, and increasing the thickness of the profile shows better improvement effect.
  • 图  1   3D有限元网格模型及边界条件

    Figure  1.   3D element model and constraint condition

    图  2   6061铝合金材料参数

    Figure  2.   Material properties parameters of 6061 aluminum alloy. (a) thermal physical properties parameters; (b) mechanical properties parameters

    图  3   中央截面温度分布

    Figure  3.   Temperature distribution of cross section. (a) moving heat source; (b) instantaneous heat source

    图  4   接头表面残余应力分布

    Figure  4.   Residual stress distribution of joint surface. (a) longitudinal residual stress by moving heat source; (b) longitudinal residual stress by instantaneous heat source; (c) transverse residual stress by moving heat source;(d) transverse residual stress by instantaneous heat source

    图  5   截面残余应力分布

    Figure  5.   Residual stress distribution of cross section. (a) longitudinal residual stress by moving heat source; (b) longitudinal residual stress by instantaneous heat source; (c) transverse residual stress by moving heat source;(d) transverse residual stress by instantaneous heat source

    图  6   复杂铝合金焊接结构有限元网格模型

    Figure  6.   Finite element mesh model of aluminum alloy welding structure. (a) 3D element model; (b) key position

    图  7   焊接接头形式(mm)

    Figure  7.   Type of weld joints. (a) butt joint; (b) T joint

    图  8   关键位置板材增厚(mm)

    Figure  8.   Thickening of the plate in key position

    图  9   温度分布

    Figure  9.   Temperature distribution

    图  10   焊缝18完成时刻关键位置y向残余应力及裂纹示意图

    Figure  10.   Diagram of y-direction residual stress and crack of key position after welding weld 18. (a) residual stress distribution; (b) residual stress of key position; (c) actual crack diagram

    图  11   关键位置温度及残余应力演变

    Figure  11.   Evolution of temperature and residual stress in key position

    图  12   关键位置y方向残余应力演变

    Figure  12.   Evolution of y-direction residual stress in key position

  • [1]

    Wahid M A, Siddiquee A N, Khan Z A. Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint[J]. Marine System & Ocean Technology, 2020, 15: 70 − 80.

    [2] 孟金奎, 王苹, 马健潇, 等. 焊接残余应力对7N01铝合金疲劳裂纹扩展影响[J]. 焊接学报, 2019, 40(9): 25 − 29.

    Meng Jinkui, Wang Ping, Ma Jianxiao, et al. The effect of welding residual stress to the fatigue crack growth of 7N01 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(9): 25 − 29.

    [3]

    Deng Dean, Liang Wei, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J]. Journal of Materials Processing Technology, 2006, 183(2): 219 − 225.

    [4] 林相远, 张威, 王利, 等. 6XXX系铝合金弧焊与高功率激光焊组织性能对比[J]. 有色金属加工, 2020, 49(2): 16 − 19. doi: 10.3969/j.issn.1671-6795.2020.02.005

    Lin Xiangyuan, Zhang Wei, Wang Li, et al. Comparison of microstructure and properties of 6XXX series aluminum alloy arc welding and large power laser welding[J]. Nonferrous Metals Processing, 2020, 49(2): 16 − 19. doi: 10.3969/j.issn.1671-6795.2020.02.005

    [5] 李桓, 徐光霈, 张宇辉, 等. 2219/5A06异种铝合金焊接接头组织与性能相关性[J]. 焊接学报, 2020, 41(9): 8 − 15.

    Li Heng, Xu Guangpei, Zhang Yuhui, et al. Correlation of structure and properties of 2219/5A06 dissimilar aluminum alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(9): 8 − 15.

    [6] 董晓晶, 李桓, 杨立军, 等. 铝合金多股复合焊丝脉冲MIG焊接接头组织与性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    Dong Xiaojing, Li Huan, Yang Lijun, et al. Analysis of structure and properties of pulsed MIG welding joints of aluminum alloy multi-strand composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    [7]

    Deng Dean, Hidekazu Murakawa, Liang Wei. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 45 − 48.

    [8] 胡兴, 戴培元, 张超华, 等. 合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响[J]. 机械工程学报, 2019, 55(12): 72 − 82. doi: 10.3901/JME.2019.12.072

    Hu Xing, Dai Peiyuan, Zhang Chaohua, et al. The effect of combined weld bead method on the calculation accuracy and efficiency of welding residual stress of SUS304 stainless steel plate butt joint[J]. Journal of Mechanical Engineering, 2019, 55(12): 72 − 82. doi: 10.3901/JME.2019.12.072

    [9] 孙加民, 邓德安, 叶延洪, 等. 用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力[J]. 焊接学报, 2016, 37(7): 31 − 34.

    Sun Jiamin, Deng Dean, Ye Yanhong, et al. Simulation of welding residual stress with transient heat source in Q390 high strength steel multi-pass T-joint[J]. Transactions of the China Welding Institution, 2016, 37(7): 31 − 34.

    [10] 颜祯, 谢伟伟, 尹志新. 连续碳纤维铝基复合材料横向等效热导率的模拟分析[J]. 装备制造技术, 2020(2): 21 − 23. doi: 10.3969/j.issn.1672-545X.2020.02.004

    Yan Zhen, Xie Weiwei, Yin Zhixin. Simulation analysis of transverse equivalent thermal conductivity of continuous carbon fiber aluminum matrix composite[J]. Equipment Manufacturing Technology, 2020(2): 21 − 23. doi: 10.3969/j.issn.1672-545X.2020.02.004

    [11] 牛志伟, 黄继华, 刘凯凯, 等. Al-Si-Ge-Zn钎料钎焊6061铝合金接头组织与性能分析[J]. 焊接学报, 2017, 38(9): 97 − 101.

    Niu Zhiwei, Huang Jihua, Liu Kaikai, et al. Microstructure and property of 6061 aluminum alloy brazed joint with Al-Si-Ge-Zn filler metal[J]. Transactions of the China Welding Institution, 2017, 38(9): 97 − 101.

  • 期刊类型引用(8)

    1. 李延民,尤浩冰,赵树森. 6061-T6铝合金中厚板-节点套多层多道焊数值模拟. 材料科学与工艺. 2024(02): 97-104 . 百度学术
    2. 管锋,张锦洲,姬世青. 孔状缺陷对铝合金焊接接头疲劳裂纹扩展路径及寿命的影响. 昆明理工大学学报(自然科学版). 2024(04): 170-178 . 百度学术
    3. 沈键,徐铭,张士旭,付天成,张少龙. 金属结构件组装及焊接的变形控制方法分析. 中国建筑金属结构. 2024(08): 44-46 . 百度学术
    4. 邵海龙,邢彦锋,张军,张小兵,杨夫勇,曹菊勇. 间隙填充模型增材制造温度场数值模拟. 轻工机械. 2023(01): 23-29 . 百度学术
    5. 王铝,李红军,廖晓平. 弓形半管夹套焊接工艺仿真. 焊接. 2023(10): 31-37+54 . 百度学术
    6. 邵海龙,邢彦锋,张小兵,杨夫勇,曹菊勇. 基于Visual Environment的铝合金增材制造温度场数值模拟. 农业装备与车辆工程. 2023(11): 28-32+44 . 百度学术
    7. 胡广旭,杨兴亚,于兴滨,魏艳红. Investigation on automated loading of dynamic 3D heat source model for welding simulation. China Welding. 2022(03): 48-52 . 百度学术
    8. 孙雪娇,纪良博,赵俊峰,朱艳旭,朱泓儒. 不同工艺参数对6063铝合金T型接MIG焊数值模拟分析的影响. 造纸装备及材料. 2021(09): 108-109 . 百度学术

    其他类型引用(10)

图(12)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  79
  • PDF下载量:  75
  • 被引次数: 18
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2021-05-07
  • 刊出日期:  2021-03-30

目录

    /

    返回文章
    返回