高级检索

典型薄壁结构件增材制造焊接路径规划优化算法

李天旭, 王天琪, 李亮玉, 杨壮

李天旭, 王天琪, 李亮玉, 杨壮. 典型薄壁结构件增材制造焊接路径规划优化算法[J]. 焊接学报, 2021, 42(2): 69-74. DOI: 10.12073/j.hjxb.20200823002
引用本文: 李天旭, 王天琪, 李亮玉, 杨壮. 典型薄壁结构件增材制造焊接路径规划优化算法[J]. 焊接学报, 2021, 42(2): 69-74. DOI: 10.12073/j.hjxb.20200823002
LI Tianxu, WANG Tianqi, LI Liangyu, YANG Zhuang. Welding path planning optimization algorithm for additive manufacturing of typical thin-walled structural parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 69-74. DOI: 10.12073/j.hjxb.20200823002
Citation: LI Tianxu, WANG Tianqi, LI Liangyu, YANG Zhuang. Welding path planning optimization algorithm for additive manufacturing of typical thin-walled structural parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 69-74. DOI: 10.12073/j.hjxb.20200823002

典型薄壁结构件增材制造焊接路径规划优化算法

基金项目: 国家自然科学基金资助项目(U1733125);天津市自然科学基金项目(17JCZDJC38700);天津市“项目+团队”重点培养专项(XC202053).
详细信息
    作者简介:

    李天旭,硕士;主要从事电弧增材制造方面研究;Email:tianxuli01@163.com.

    通讯作者:

    王天琪,博士,讲师;Email:wtq0622@163.com.

  • 中图分类号: TG 455

Welding path planning optimization algorithm for additive manufacturing of typical thin-walled structural parts

  • 摘要: 针对复杂曲面薄壁件的电弧增材制造引入有理B样条曲线求取成形轨迹. 首先根据预制件三维模型提取轮廓数据建立轨迹曲线方程,自动生成成形路径;然后通过边缘曲线方程计算预制件在z轴方向上偏移量,进行高度补偿预测,提高分层精度,实现基于高度预测的分层算法优化. 另一方面针对具有相交特征的薄壁件交叉点处焊高过高等问题,基于相反、相切成形路径思想设计最佳路径,同时可以尽量减小由于应力集中和热累计产生的误差. 最后通过试验得到不同焊接参数下对应焊缝尺寸,确定合适的焊接参数范围,并通过典型复杂薄壁件的成形试验验证优化算法可行性. 结果表明,电弧增材制造成形路径规划优化算法提高了分层精度,实现了基于高度预测的分层算法优化,并且制备的实体件表面成形良好,成形尺寸误差在可接受范围内,此算法可以应用在制备薄壁结构件过程中.
    Abstract: The rational B-spline curve was introduced to obtain the forming trajectory for the wire arc additive manufacturing of thin-walled parts with complex curved surfaces. Firstly, the contour data were extracted according to the 3D model of the perform and the trajectory curve equation was established, then the forming path was automatically generated. Secondly, the offset of the performance in the z-axis direction was calculated by the edge curve equation, and the height compensation prediction was carried out to improve the layering accuracy and optimized the layering algorithm based on height prediction. Thirdly, aiming at the problem of high welding height at the intersection of thin-walled parts with intersection characteristics, the optimal path was designed based on the idea of an opposite and tangent forming path, and the error caused by stress concentration and heat accumulation can be minimized. Finally, the corresponding weld sizes under different welding parameters were obtained by experiments, and the suitable welding parameters range was determined. The feasibility of the optimization algorithm was verified by forming experiments of typical complex thin-walled structures. The results showed that the path planning optimization algorithm improved the layering accuracy and realized the layering algorithm optimization based on height prediction. At the same time, the surface of the solid part was well-formed, and the forming dimension error was within the acceptable range, so this algorithm can be applied in the process of preparing thin-walled structures.
  • 图  1   离线编程流程图

    Figure  1.   Offline programming flow chart

    图  2   离线编程

    Figure  2.   Offline programming. (a) model layering; (b) IGES file data; (c) programming and running module; (d) curve generation

    图  3   路径优化图

    Figure  3.   Path optimization diagram. (a) initially plan; (b) optimization path 1; (c) optimization path 2

    图  4   焊接参数与焊缝尺寸对应图

    Figure  4.   Corresponding drawing of welding parameters and weld size

    图  5   路径优化的成形效果

    Figure  5.   Forming effect of path optimization. (a) initially plan; (b) optimization path 1; (c) optimization path 2

    图  6   实体成形图

    Figure  6.   Solid forming diagram. (a) leaf; (b) gourd; (c) flowerpot

    表  1   曲线参数数据

    Table  1   Curve parameter data

    索引(数据顺序)名称类型备注
    1 126型曲线实体
    2 K 整型 总和的上限标志
    3 k 整型 基函数的阶数
    4 ~ 7 PROP 整型 0表示非平面,1表示平面
    8 ~ (8 + A) t 实型 节点序列
    (9 + A) ~ (9 + A + K) qi 实型 权值因子
    (10 + A + K) ~
    (12 + A + 4K)
    di 实型 控制点
    (13 + A + 4K) ~
    (14 + A + 4K)
    u 实型 起始和终止
    参变量u
    (15 + A + 4K) ~
    (17 + A + 4K)
    X/Y/ZNORM 实型 单位法向
    下载: 导出CSV
  • [1] 柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90.

    Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90.

    [2]

    Panchagnula J S, Simhambhatla S. Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 194 − 203. doi: 10.1016/j.rcim.2017.06.003

    [3]

    Sun Qingjie, Sang Haibo, Liu Yibo, et al. Cross section scan trace planning based on arc additive manufacturing[J]. China Welding, 2019, 28(4): 16 − 21.

    [4]

    Geng H, Li J, Xiong J, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243: 40 − 47. doi: 10.1016/j.jmatprotec.2016.11.027

    [5] 杨建华, 张定华, 吴宝海. 考虑加工过程的复杂薄壁件加工综合误差补偿方法[J]. 航空学报, 2014, 35(11): 3174 − 3181.

    Yang Jianhua, Zhang Dinghua, Wu Baohai. A comprehensive error compensation approach considering machining process for complex thin-wall parts machining[J]. Acta Aeronautica et Astronauica Sinica, 2014, 35(11): 3174 − 3181.

    [6] 王美茜. 义齿3D打印技术中分层算法与刀具路径生成策略的研究[D]. 长春: 吉林大学, 2016.

    Wang Meiqian. Study of hierarchical algorithm and path generation strategy in 3D printing technology of denture model[D]. Changchun: Jilin University, 2016.

    [7] 王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125

    Wang Tianqi, Li Tianxu, Li Liangyu, et al. Welding path planning optimization algorithm for additive manufacturing of typical thin-walled structural parts[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125

    [8]

    Ribeiro F, Ogunbiyi B, Norrish J. Mathematical model of welding parameters for rapid prototyping using robot welding[J]. Science & Technology of Welding & Joining, 2014, 2(5): 185 − 190.

    [9]

    Ding D, Shen C, Pan Z, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-Aided Design, 2016, 73: 66 − 75. doi: 10.1016/j.cad.2015.12.003

    [10] 刘晓健, 张树有, 魏栋, 等. 复杂曲面加工中等距双NURBS刀具路径高效插补方法[J]. 计算机集成制造系统, 2017, 23(6): 1286 − 1295.

    Liu Xiaojian, Zhang Shuyou, Wei Dong, et al. Isometric dual-nurbs high quality interpolation algorithm for complex surface processing[J]. Computer Integrated Manufacturing Systems, 2017, 23(6): 1286 − 1295.

    [11] 孙海洋. NURBS曲线刀具路径实时插补技术研究[D]. 长沙: 国防科学技术大学, 2008.

    Sun Haiyang. Research on real-time algorithms of NURBS tool-paths interpolation[D]. Changsha: National University of Defense Science and technology, 2008.

  • 期刊类型引用(1)

    1. 张宏, 李久楷, 刘永杰, 王清远. GH80A镍合金电子束焊接接头旋转弯曲高周疲劳行为研究. 工程科学与技术. 2017(04): 188-195 . 百度学术

    其他类型引用(0)

图(6)  /  表(1)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  96
  • PDF下载量:  71
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-08-22
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回