Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy
-
摘要: 疲劳裂纹扩展速率是材料内在组织性能的宏观外在表现,显微组织和残余应力对宏观疲劳裂纹的扩展有显著的影响. 文中研究了2A12-T4铝合金搅拌摩擦焊不同区域的疲劳裂纹扩展速率. 结果表明,在焊缝区域,由于搅拌针强烈的机械和焊接热作用,材料组织发生变化,并伴有残余应力的产生,导致不同区域裂纹的扩展速率存在明显差异. 在低应力强度因子范围(ΔK)时,热影响区和垂直于焊缝方向的疲劳裂纹扩展速率基本相同,并且都高于沿焊缝方向裂纹的扩展速率;在高应力强度因子范围(ΔK)时,垂直于焊缝方向的扩展速率逐渐高于热影响区速率,此时这两个区域的裂纹扩展速率仍然高于沿焊缝方向裂纹的扩展速率.Abstract: Fatigue crack growth rate is the macroscopic and external performance of the internal structure of the material. Microstructure and residual stress have a significant effect on the growth of macroscopic fatigue cracks.In this paper, the fatigue crack growth rate of different areas of 2A12-T4 aluminum alloy friction stir welding is studied.The results show that: in the weld area, due to the strong mechanical and welding heat action of the stirring pin, the material structure changes, accompanied by the generation of residual stress, resulting in significant differences in the growth rate of cracks in different areas.At low ΔK, the heat-affected zone and the fatigue crack growth rate perpendicular to the weld are basically the same, and both are higher than the crack growth rate along the weld.At high ΔK, the growth rate perpendicular to the weld seam direction is gradually higher than the heat-affected zone rate. At this time, the crack growth rate in these two regions is still higher than the crack growth rate along the weld seam direction.
-
Keywords:
- friction stir welding /
- 2A12 aluminum alloy /
- residual stress /
- microstructure
-
-
表 1 2A12-T4合金的化学成分(质量分数,%)
Table 1 2A12-T4 alloy chemical composition
Si Fe Cu Mg Zn Ti Mn 其它元素 Al 0.5 0.5 3.8 ~ 4.9 1.2 ~ 1.8 0.3 0.15 0.3 ~ 0.9 Ni:0.1, (Fe + Ni):0.5 余量 -
[1] 栾国红, 郭德伦, 关桥, 等. 飞机制造工业中的搅拌摩擦焊研究[J]. 航空制造技术, 2002(10): 43 − 46. doi: 10.3969/j.issn.1671-833X.2002.10.017 Luan Guohong, Guo Delun, Guan Qiao. Research on friction stir welding in aircraft manufacturing industry[J]. Aviation Manufacturing Technology, 2002(10): 43 − 46. doi: 10.3969/j.issn.1671-833X.2002.10.017
[2] Kar-Erik K, Pekari B. Frication stir welding process goes commercial[J]. Welding Journal, 1997, 76(9): 55 − 56.
[3] 徐春容, 王世忠, 徐蒋明. 搅拌摩擦焊技术在核工业中的应用[J]. 金属铸锻焊技术, 2008(7): 122 − 124. Xu Chunrong, Wang Shizhong, Xu Jiangming. Application of friction stir welding technology in nuclear industry[J]. Metal Casting and Forging Welding Technology, 2008(7): 122 − 124.
[4] Gerlich A, Su P, North T H. Tool penetration during friction stir spot welding of Al and Mg alloy[J]. Journal of Materials Science, 2005(40): 6473 − 6481.
[5] Wang L, Hui L, Zhou S, et al. Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld[J]. Transactions of Nonferrous Metals Society of China, 2016, 26: 2830 − 2837. doi: 10.1016/S1003-6326(16)64411-4
[6] Besel Y, Besel M, Mercado U A, et al. Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy[J]. International Journal of Fatigue, 2017, 99: 151 − 162. doi: 10.1016/j.ijfatigue.2017.02.024
[7] 张海泉, 张彦华, 李刘合, 等. 力学失配对电子束焊接接头疲劳裂纹扩展行为的影响[J]. 焊接学报, 2000, 21(3): 40 − 43. doi: 10.3321/j.issn:0253-360X.2000.03.011 Zhang Haiquan, Zhang Yanhua, Li Liuhe, et al. Effect of mechanical mismatch on fatigue crack growth behavior of electron beam welded joints[J]. Transactions of the China Welding Institution, 2000, 21(3): 40 − 43. doi: 10.3321/j.issn:0253-360X.2000.03.011
[8] Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint[J]. Engineering Fracture Mechanics, 2014, 115(1): 296 − 307.
[9] Zhu L, Tao X Y. The study of weld strength mismatch effect on limit loads of part surface and embedded flaws in plate[J]. International Journal of Pressure Vessels & Piping, 2016, 139–140: 61 − 68.
[10] Trudel A, Sabourin M, Lévesque M, et al. Fatigue crack growth in the heat affected zone of a hydraulic turbine runner weld[J]. International Journal of Fatigue, 2016, 66: 39 − 46.
[11] 吴圣川, 周鑫淼, 张卫华, 等. 激光-电弧复合焊接7075-T6铝合金裂纹扩展分析[J]. 焊接学报, 2013, 34(2): 5 − 8. Wu Shengchuan, Zhou Xinmiao, Zhang Weihua, et al. Analysis of crack propagation in laser-arc hybrid welding 7075-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 5 − 8.
[12] John R, Jata K V, Sadananda K. Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys[J]. International Journal of Fatigue, 2003, 25: 939 − 948. doi: 10.1016/j.ijfatigue.2003.08.002
[13] Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J]. Scripta Materialia, 2004, 51(3): 237 − 248. doi: 10.1016/j.scriptamat.2004.04.014
[14] Muzvidziwa M, Okazaki M, Suzuki K, et al. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti-6Al–4V[J]. Materials Science & Engineering A, 2016, 652: 59 − 68.
[15] 孟金奎, 王苹, 马健瀟, 等. 焊接残余应力对7N01铝合金疲劳裂纹扩展影响[J]. 焊接学报, 2019, 40(9): 25 − 29. Meng Jinkui, Wang Ping, Ma Jianxiao, et al. Influence of welding residual stress in fatigue crack growth of 7N01 aluminum alloy[J]. Thansactions of the China Welding Institution, 2019, 40(9): 25 − 29.
[16] 凌堃, 黄笑梅. 焊接接头热影响区裂纹启裂行为的探讨[J]. 焊接学报, 2019, 40(1): 124 − 130. doi: 10.12073/j.hjxb.2019400025 Ling Kun, Huang Xiaomei. Discussion of HAZ crack initiation behaviour of mismatched welded joints[J]. Thansactions of the China Welding Institution, 2019, 40(1): 124 − 130. doi: 10.12073/j.hjxb.2019400025