高级检索

基于能量耗散的激光焊对接接头高周疲劳性能快速评估

魏巍, 张运通, 刘柯, 贾昕, 杨鑫华

魏巍, 张运通, 刘柯, 贾昕, 杨鑫华. 基于能量耗散的激光焊对接接头高周疲劳性能快速评估[J]. 焊接学报, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001
引用本文: 魏巍, 张运通, 刘柯, 贾昕, 杨鑫华. 基于能量耗散的激光焊对接接头高周疲劳性能快速评估[J]. 焊接学报, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001
WEI Wei, ZHANG Yuntong, LIU Ke, JIA Xia, YANG Xinhua. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001
Citation: WEI Wei, ZHANG Yuntong, LIU Ke, JIA Xia, YANG Xinhua. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001

基于能量耗散的激光焊对接接头高周疲劳性能快速评估

基金项目: 国家自然科学基金资助项目(51875072, 52005071);辽宁省高等学校国(境)外培养项目(2018LNGXGJWPY-YB012)
详细信息
    作者简介:

    魏巍,博士研究生;主要研究方向为焊接结构疲劳服役与可靠性分析;Email: ouyangweirui1995@163.com

    通讯作者:

    杨鑫华,教授;Email:yangxh@djtu.edu.cn.

  • 中图分类号: TG 405

Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation

  • 摘要: 基于红外热像法获得对接接头疲劳自热温升数据,建立激光焊对接接头能量耗散疲劳评估模型. 借助能量耗散模型,对Q310NQL2-Q345NQR2激光焊接头高周疲劳过程的疲劳性能进行了研究. 结果表明,随着应力幅值的增加,Q310NQL2-Q345NQR2激光焊接头的能量耗散随之增加,并在疲劳极限附近出现了拐点. 结合 RVE(representative volume element)模型分析,该拐点正是材料内部从单一的可逆微结构运动到同时包括可逆和不可逆的微结构运动的转折点. 其中不可逆微结构运动相应于引起材料损伤的非弹性耗散,当损伤累积到一定程度,其相应的非弹性能量耗散也存在阀值. 以此阀值作为疲劳寿命预测参量,建立高周疲劳激光焊对接接头疲劳寿命预测模型,实现S-N曲线的快速预测.
    Abstract: The fatigue evaluation model of laser-welded butt joint based on energy dissipation is established using the data of fatigue self-heating measured by an infrared thermal imager. The fatigue performance of the Q310NQL2-Q345NQR2 laser welded joint during the high-cycle fatigue (HCF) process is studied based on the presented model. The results show that as the stress amplitude increases, the energy dissipation of the Q310NQL2-Q345NQR2 laser welded joint increases, and when combined with the (representative volume element) RVE model to analyze, the knee point is exactly the turning point near the fatigue limit where the microstructure movement within the material gradually changes from only reversible behavior to both reversible and irreversible behaviors. The irreversible microstructure movement corresponds to the induced-damage inelastic dissipation. When the damage accumulates to a certain extent, the corresponding inelastic energy dissipation reaches a threshold value. Therefore, if taking this threshold value as the fatigue life prediction index, the HCF fatigue life prediction model of the laser-welded butt joint is well established for realizing the rapid prediction of the S-N curve.
  • 图  1   基于RVE模型的宏微观力学行为分析示意图

    Figure  1.   Fig. 1 Schematic of macro and micro mechanical behavior analysis based on RVE model. (a) RVE model; (b) number of the activated atoms

    图  2   温升进程示意图

    Figure  2.   Schematic of temperature evolution

    图  3   基于能量耗散的疲劳极限预测模型

    Figure  3.   Fatigue limit prediction model based on energy dissipation

    图  4   试件几何尺寸

    Figure  4.   Dimension of specimen

    图  5   疲劳试验设备

    Figure  5.   Fatigue test equipment

    图  6   基于能量耗散的疲劳极限预测

    Figure  6.   Fatigue limit prediction based on energy dissipation

    图  7   基于传统升降法的疲劳极限评估

    Figure  7.   Fatigue limit evaluation based on traditional staircase method

    图  8   基于能量方法和传统试验获得的S-N曲线

    Figure  8.   S-N curve obtained based on energy method and traditional tests

    表  1   Q310NQL2耐候钢主要化学成分

    Table  1   Main chemical composition of Q310NQL2 weathering steel

    CSiMnPSCuCrNiFe
    ≤0.120.25 ~ 0.750.20 ~ 0.500.06 ~ 0.12≤0.020.25 ~ 0.500.30 ~ 1.250.12 ~ 0.6596.09 ~ 98.68
    下载: 导出CSV

    表  2   Q345NQR2耐候钢主要化学成分

    Table  2   Main chemical composition of Q345NQL2 weathering steel

    CSiMnPSCrNiCuTiFe
    ≤0.120.25 ~ 0.750.20 ~ 0.500.06 ~ 0.12≤0.020.30 ~ 1.250.12 ~ 0.650.25 ~ 0.5096.09 ~ 98.68
    下载: 导出CSV

    表  3   激光焊对接接头力学性能

    Table  3   Mechanical property of laser welding butt joints

    屈服强度
    ReL/MPa
    抗拉强度
    Rm/MPa
    屈强比
    R
    断后伸长率
    A(%)
    4065370.76≥14.28
    下载: 导出CSV

    表  4   应力幅为148.5 MPa的试件能量耗散值

    Table  4   Energy dissipation of three specimens under the stress amplitude equals 148.5 MPa

    编号能量耗散Ec/(109 J·m−3)平均能量耗散$\bar E_{\rm{c}} $/(109 J·m−3)
    12.55
    23.063.31
    34.33
    下载: 导出CSV
  • [1] 杨鑫华, 孙屹博, 邹丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11 − 14.

    Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11 − 14.

    [2]

    Wang Yue, Chai Peng, Guo Xiaojuan, et al. Effect of connection processes on mechanical properties of 7B04 aluminum alloy structures[J]. China Welding, 2021, 30(2): 50 − 57.

    [3] 樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001

    Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001

    [4]

    Wei Wei, Li Cheng , Sun Yibo , et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232.

    [5]

    Zhang L, Liu X S, Wu S H, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.

    [6] 孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66.

    Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.

    [7]

    Zhang H X, Wu G H, Yan Z F, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials & Design, 2014, 55: 785 − 791.

    [8] 郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002

    Guo Shaofei, Liu Xuesong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002

    [9] 魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001

    Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001

    [10]

    Liu Y, Sun Y, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.

    [11] 刘亚良. 基于疲劳损伤熵的点焊接头累积损伤评估方法研究[D]. 大连: 大连交通大学, 2018.

    Liu Yaliang. Research on cumulative damage assessment method of spot welded joints based on fatigue damage entropy[D]. Dalian: Dalian Jiaotong University, 2018.

    [12]

    Lemaitre J, Sermage J, Desmorat R. A two scale damage concept applied to fatigue[J]. International Journal of Fracture, 1999, 97: 67 − 81. doi: 10.1023/A:1018641414428

    [13]

    Fan J L, Zhao Y G, Guo X L, et al. A unifying energy approach for high-cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.

    [14]

    Yang W P, Guo X L, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472. doi: 10.1016/j.ijfatigue.2019.03.024

    [15]

    Palumbo D, Finis R D, Ancona F, et al. Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements[J]. Engineering Fracture Mechanics, 2017, 181: 65 − 76. doi: 10.1016/j.engfracmech.2017.06.017

    [16]

    Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.

    [17]

    Guo Q, Zaïri F, Guo X L. An intrinsic dissipation model for high-cycle fatigue life prediction[J]. International Journal of Mechanical Sciences, 2018, 140: 163 − 171. doi: 10.1016/j.ijmecsci.2018.02.047

图(8)  /  表(4)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  21
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回