高级检索

变极性GMAW焊接电源仿真建模与设计

曾敏, 叶秋金, 李阳, 胡子鑫

曾敏, 叶秋金, 李阳, 胡子鑫. 变极性GMAW焊接电源仿真建模与设计[J]. 焊接学报, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001
引用本文: 曾敏, 叶秋金, 李阳, 胡子鑫. 变极性GMAW焊接电源仿真建模与设计[J]. 焊接学报, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001
ZENG Min, YE Qiujin, LI Yang, HU Zixin. Simulation and design of variable polarity GMAW welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001
Citation: ZENG Min, YE Qiujin, LI Yang, HU Zixin. Simulation and design of variable polarity GMAW welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001

变极性GMAW焊接电源仿真建模与设计

基金项目: 广东省自然科学基金项目(2021A1515011773)
详细信息
    作者简介:

    曾敏,博士,副教授;主要从事数字化电源及其智能控制等的研究;Email: memzeng@scut.edu.cn

  • 中图分类号: TG 434

Simulation and design of variable polarity GMAW welding power source

  • 摘要: 针对焊接过程中热输入大、薄板易熔穿等问题,研制了一种基于STM32F405单片机的高效变极性熔化极气体保护焊(variable-polarity gas metal arc welding, VP GMAW)焊接系统,可以通过调整焊接电流正负极性的时间以及电流的大小来控制焊接工件的热输入量. 通过分析带耦合电感的半桥式二次逆变电路电流换向状态,建立相应的数学模型. 针对变极性焊接过程中存在的问题,设计理想的控制波形并制定相应的控制策略. 以上述的数学模型和控制方案为基础,建立变极性熔化极气体保护焊(gas metal arc welding, GMAW)焊接系统仿真模型,验证控制策略的可行性. 将仿真结果与实际测量波形进行对比分析. 结果表明,所建立的仿真模型符合实际预期,可以为变极性电源设计提供较好的参考模型. 最后在焊接平台上使用制造的VP GMAW焊接样机在1 mm薄钢板进行堆焊试验. 结果表明,焊缝表面光洁、成形规则,即使在变极性下依然能够实现薄板的稳定焊接.
    Abstract: A variable-polarity gas metal arc welding (VP GMAW) welding power supply based on STM32F405 is built to solve the problems of high-heat input and easy deformation for the metal sheet, which is applied to adjust the heat input through modulating the duration of EN/EP and the amplitude of output current. The mathematical model of a second inverting stage with coupling inductance is established based on the analysis of the commutation of the output current. Besides, ideal output waveforms and a control method are developed to solve some problems in the process of variable-polarity (VP) welding. On the basis of the research above, a simulation model for verifying the feasibility of the control method provided is carried out to work as a good reference model for the design of a VP power supply. Compared with the experimental waveforms, the results show it lives up to the factual expectation. Finally, an experimental prototype of VP GMAW power supply is developed to perform a bead welding experiment on an 1 mm thick metal sheet. The result shows that the weld surface is smooth and regular, and there is still an effective and stable welding progress in case of the commutation of output current polarity.
  • 图  1   变极性焊接系统总体框架

    Figure  1.   Variable polarity welding system diagram

    图  2   二次逆变原理图

    Figure  2.   Schematic diagram of secondary inverter

    图  3   二次逆变等效电路

    Figure  3.   Equivalent circuit of secondary inverter. (a) EP; (b) EP→EN; (c) EN; (d) EN→EP

    图  4   理想输出波形

    Figure  4.   Ideal output waveform

    图  5   焊接电流波形控制策略

    Figure  5.   A control method of welding current

    图  6   变极性焊接系统仿真模型

    Figure  6.   Simulation model of VP welding system

    图  7   仿真输出波形

    Figure  7.   Simulation output waveforms

    图  8   工艺试验平台

    Figure  8.   Welding experimental platform

    图  9   焊接电源实测波形

    Figure  9.   Output waveform of welding power supply

    图  10   1 mm薄板焊缝形貌

    Figure  10.   Welding morphology of 1 mm thin. (a) welding surface; (b) welding cross section

    表  1   焊接试验参数

    Table  1   Welding test parameters

    燃弧脉冲电流
    Ip/A
    燃弧基值电流
    Ib/A
    润湿电流
    Is1/A
    润湿时间
    Ts1/ms
    短路初期电流
    Is2/A
    电流上升斜率
    Ks/(A·ms−1)
    缩颈电流
    Is3/A
    气体流量
    Qf/(L·min−1)
    送丝速度
    vs/(m·min−1)
    22070300.31204030154.4
    下载: 导出CSV
  • [1]

    Bo M A, Yan P, Bin J, et al. Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B[J]. Journal of Iron and Steel Research International, 2010, 17(8): 61 − 66. doi: 10.1016/S1006-706X(10)60130-6

    [2] 雷小伟, 杨瑞, 齐风华, 等. 先进的熔化极气体保护焊焊接技术发展[J]. 材料开发与应用, 2013, 28(2): 93 − 98.

    Lei Xiaowei, Yang Rui, Qi Fenghua, et al. Development of advanced GMAW technology[J]. Development and Application of Materials, 2013, 28(2): 93 − 98.

    [3]

    Kah P, Suoranta R, Martikainen J. Advanced gas metal arc welding processes[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1-4): 655 − 674. doi: 10.1007/s00170-012-4513-5

    [4]

    Jeong H, Park K, Baek S, et al. Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 729 − 737. doi: 10.1016/j.ijheatmasstransfer.2019.04.089

    [5]

    Sarrafi R, Kovacevic R. Cathodic cleaning of oxides from aluminum surface by variable-polarity arc[J]. Welding Journal, 2010, 89(1): 1 − 10.

    [6]

    Han Yongquan , Du Maohua, Yao Qinghu, et al. The Signal examination in variable polarity plasmaarc welding of aluminum alloy [C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China, 2011: 941-944.

    [7] 程林, 胡绳荪, 王志江. 变极性TIG焊电弧压力分析[J]. 焊接学报, 2012, 35(11): 101 − 104.

    Cheng Lin, Hu Shengsun, Wang Zhijiang. Arc pressure analysis in variable polarity TIG welding[J]. Transactions of the China Welding Institution, 2012, 35(11): 101 − 104.

    [8] 田银宝,申俊琦,胡绳荪,等. EP/EN模数对铝合金VP-CMT焊熔滴过渡及焊道成形的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1663 − 1668. doi: 10.3969/j.issn.1001-2303.2011.06.004

    Tian Yinbao, Shen Junqi, Hu Shengsun, et al. Effect of EP/EN balance on droplet transfer and weld formation of Al alloy by VP-CMT[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663 − 1668. doi: 10.3969/j.issn.1001-2303.2011.06.004

    [9]

    Yang Zhongyu, Zhu Zhiming, Liu Bo. Reverse voltage generating circuit for rapid commutation of output current polarity in variable polarity arc welding power supply[J]. IET Power Electronics, 2017, 10(12): 1609 − 1616. doi: 10.1049/iet-pel.2016.0748

    [10] 陈杰, 朱志明, 王琳化, 等. 新型变极性焊接电源二次逆变电路及其控制技术[J]. 焊接学报, 2009, 30(2): 30 − 33.

    Chen Jie, Zhu Zhiming, Wang, Linhua, et al. A novel secondary inverting circuit of the variable polarity welding power supply and its control technology[J]. Transactions of the China Welding Institution, 2009, 30(2): 30 − 33.

    [11] 丁坤, 姚河清, 范兴辉, 等. 变极性TIG焊电弧负载特性及换向控制策略[J]. 焊接学报, 2008, 29(9): 31 − 34. doi: 10.3321/j.issn:0253-360X.2008.09.009

    Ding Kun, Yao Heqing, Fan Xinghui, et al. Welding arc load characteristics of variable polarity TIG welding and its control strategy at commutation[J]. Transactions of the China Welding Institution, 2008, 29(9): 31 − 34. doi: 10.3321/j.issn:0253-360X.2008.09.009

    [12]

    Cho J, Lee J J, Bae S H. Heat input analysis of variable polarity arc welding of aluminum[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(5-8): 1273 − 1280. doi: 10.1007/s00170-015-7292-y

    [13] 傅强. 低热输入变极性短路过渡GMAW焊接系统研究[D]. 南京: 南京航空航天大学, 2013.

    Fu Qiang. Research on low heat input variable polarity short-circuit transfer gas metal arc welding system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

    [14] 杨中宇, 朱志明, 汤莹莹, 等. 稳压式变极性焊接电源二次逆变拓扑及控制策略[J]. 焊接学报, 2017, 38(9): 23 − 27. doi: 10.12073/j.hjxb.20151117001

    Yang Zhongyu, Zhu Zhiming, Tang Yingying, et al. Topology of secondary inverter and its control strategy of variable polarity welding power supply for generating stabilized reverse voltage[J]. Transactions of the China Welding Institution, 2017, 38(9): 23 − 27. doi: 10.12073/j.hjxb.20151117001

图(10)  /  表(1)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  25
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 录用日期:  2021-12-20
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回