高级检索

航空压气机叶片增材修复最优热输入分析

龚淼, 戴士杰, 王志平, 王立文

龚淼, 戴士杰, 王志平, 王立文. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001
引用本文: 龚淼, 戴士杰, 王志平, 王立文. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001
GONG Miao, DAI Shijie, WANG Zhiping, WANG Liwen. Research on optimal heat input for blade repair of aero compressor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001
Citation: GONG Miao, DAI Shijie, WANG Zhiping, WANG Liwen. Research on optimal heat input for blade repair of aero compressor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001

航空压气机叶片增材修复最优热输入分析

基金项目: 国家重点研发计划项目(2019YFB1311104);中国民航科技重大专项(MHRD20130104).
详细信息
    作者简介:

    龚淼,1982年出生,博士,副研究员;主要研究方向为:航空发动机叶片增材修复;Email:mgong69@163.com.

    通讯作者:

    戴士杰,教授,博士研究生导师. Email:dsj7176@126.com.

  • 中图分类号: TG 456.3

Research on optimal heat input for blade repair of aero compressor

  • 摘要: 建立了压气机叶片MPAW增材修复传热模型,首先通过分析合金的热物性,计算出叶片MPAW增材修复的热输入范围,得到了不同热输入下熔池的温度分布. 之后创建了增材高度与送丝速度的数学模型,求解出不同送丝速度下的增材高度,并通过对焊缝截面温度分布的数值分析,进一步缩小热输入范围,得到试验参数. 最后通过数值分析及试验对比,揭示了合金修复区组织形貌与热输入率的演化规律,得到了最优的热输入和匹配的焊接参数.结果表明,试验结果与理论模型吻合度较好,验证了理论方法的有效性. 对于1 mm厚度的超薄压气机叶片的增材修复,采用研究得到的焊接参数,可达到最优热输入率,实现较好的增材形貌和增材修复效果.
    Abstract: A heat transfer model for MPAW additive manufacturing repair of compressor blades was established. Firstly, the heat input range was calculated by analyzing the thermal properties of the alloy, and the temperature distribution of molten pool under different heat input was obtained. After that, the mathematical model of the additive manufacturing height and wire feeding speed was established, and the height under different wire feeding speed was solved. Through the numerical analysis of temperature distribution of weld cross-section, the heat input range was further reduced and the experimental parameters were obtained. Finally, with numerical analysis and experimental comparison, the evolution law of microstructure and heat input rate of the alloy repair zone was revealed, and the optimal heat input and welding parameters were obtained. The experimental results are in good agreement with the theoretical model, which verifies the effectiveness of the theoretical method. The results show that the optimal heat input rate can be achieved by using the welding parameters obtained, and the better additive manufacturing morphology and repair effect can be achieved.
  • 图  1   网格划分及质量分布图

    Figure  1.   Finite element mesh generation quality

    图  2   MPAW增材修复后的截面形貌图

    Figure  2.   Cross section morphology after MPAW additive manufacturing repair

    图  3   牛顿迭代法计算步骤

    Figure  3.   Newton iteration calculation steps

    图  4   不同送丝速度下焊缝微截面平均温度随时间的分布

    Figure  4.   Temperature distribution of the micro section of the weld with the time under different wire feeding speeds. (a) 3.39 mm/s; (b) 2.54 mm/s

    图  5   焊缝区显微组织形貌(试验1)

    Figure  5.   Microstructure of the weld zone (Exp.1)

    图  6   焊缝区白色带状区域能谱分析

    Figure  6.   EDS of white banded structure in weld zone. (a) EDS 1; (b) EDS 2

    图  7   析出颗粒EDS观测结果(试验1)

    Figure  7.   Energy spectrum analysis of precipitates (Expt.1). (a) region of Fig.6a; (b) region of Fig.6b

    图  9   焊缝区显微组织形貌(试验3)

    Figure  9.   Microstructure of the weld zone (Exp.3)

    图  8   焊缝区显微组织形貌(试验2)

    Figure  8.   Microstructure of the weld zone (Exp.2)

    图  10   焊缝区白色带状组织能谱分析(试验3)

    Figure  10.   EDS of white banded structure in weld zone (Exp.3). (a) EDS 1; (b) EDS 2

    图  11   焊缝区显微组织形貌(试验4)

    Figure  11.   Microstructure of the weld zone (Exp.4)

    图  12   堆焊区电子背散射衍射成像(试验4)

    Figure  12.   EBSD imaging of the weld zone (Exp.4)

    图  13   增材区HDBS和EDS检测结果(试验4)

    Figure  13.   HDBSD and EDS of additive manufacturing repair zone (Expt.4)

    图  14   送丝速度为3.39 mm/s (8 in/min)的增材区截面形貌

    Figure  14.   Cross section morphology of additive zone with wire feeding speed of 3.39 mm/s (8 in/min)

    图  15   送丝速度为2.54 mm/s (6 in/min)的增材区截面形貌

    Figure  15.   Cross section morphology of additive zone with wire feeding speed of 2.54 mm/s (6 in/min)

    表  1   Inconel 718合金试片与焊丝的化学成分(质量分数,%)

    Table  1   Chemical composition of Inconel 718 specimens and welding wire

    材料AlCCoCrCuFeMnMoNbNiSiTi
    试片0.390.0520.05190.1716.70.292.934.9752.30.260.9
    焊丝0.560.0330.1518.60.05618.030.122.984.8553.60.100.92
    平均值0.4750.04250.118.80.11317.3650.2052.9554.9153.950.180.91
    下载: 导出CSV

    表  2   不同增材修复高度的计算结果

    Table  2   Calculation results of different weld overlay heights

    $\dfrac{{{v_2}}}{{{v_1}}}$ 初值 结果${r_i}$/mm 精度$\varepsilon $ 迭代次数 前次误差 结果H/mm
    $\dfrac{3}{3}$1${\rm{5}}{\rm{.52}} \times {\rm{1}}{{\rm{0}}^{ - 1}}$$1 \times {10^{ - 10}}$ 32${\rm{9}}{\rm{.82}} \times {\rm{1}}{{\rm{0}}^{ - 11}}$0.78
    $\dfrac{6}{3}$1${\rm{6}}{\rm{.41}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}$$1 \times {10^{ - 10}}$32${\rm{5}}{\rm{.84}} \times {\rm{1}}{{\rm{0}}^{ - 11}}$ 1.04
    $\dfrac{8}{3}$1${\rm{7}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 1}}$$1 \times {10^{ - 10}}$ 31 ${\rm{7}}{\rm{.74}} \times {\rm{1}}{{\rm{0}}^{ - 11}}$ 1.19
    $\dfrac{{10}}{3}$1${\rm{7}}{\rm{.58}} \times {\rm{1}}{{\rm{0}}^{ - 1}}$$1 \times {10^{ - 10}}$30${\rm{9}}{\rm{.59}} \times {\rm{1}}{{\rm{0}}^{ - 11}}$1.33
    下载: 导出CSV

    表  3   试验参数

    Table  3   Experimental parameters

    编号焊接电流
    I/A
    电弧电压
    U/V
    送丝速度
    v2/(mm·s−1)
    热源移动速度
    v3/(mm·s−1)
    1 25 15 3.39 1.27
    2 25 15 2.54 1.27
    3 28 15.4 3.39 1.27
    4 28 15.4 2.54 1.27
    下载: 导出CSV

    表  4   维氏硬度检测结果(HV0.1)

    Table  4   HV test results in different areas (HV0.1)

    检测区域12345平均值偏差率δ (%)
    增材区 198.3 197.5 193.9 195.1 189.7 195.88 1.66%
    母材 206.7 199.7 194.2 193,7 195.7 199.08
    下载: 导出CSV
  • [1] 张冬梅, 崔海超, 杨尚磊, 等. Inconel 718激光焊接接头组织与热影响区裂纹研究[J]. 材料导报, 2016, 30(8): 96 − 99.

    Zhang Dongmei, Cui Haichao, Yang Shanglei, et al. Microstructures and microfissuring in the HAZ of Inconel 718 welds by laser welding[J]. Materials Reports, 2016, 30(8): 96 − 99.

    [2]

    Benoit A, Jobez S, Paillard P, et al. Study of Inconel 718 weldability using MIG CMT process[J]. Science and Technology of Welding and Joining, 2011, 16(6): 477 − 482. doi: 10.1179/1362171811Y.0000000031

    [3]

    Ramaswamy V, Swann P R, West D R F. Observation on intermetallic compound and carbide precipitation in two commercial nickel-base superalloys[J]. Journal of the Less-Common Metals, 1972, 27(1): 17 − 26. doi: 10.1016/0022-5088(72)90098-7

    [4] 王凯博, 吕耀辉, 刘玉欣, 等. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响[J]. 材料导报, 2017, 31(14): 100 − 104. doi: 10.11896/j.issn.1005-023X.2017.014.021

    Wang Kaibo, Lü Yaohui, Liu Yuxin, et al. Influence of heat input on microstructure and mechanical properties of pulse plasma arc additive manufactured Inconel 718 alloy[J]. Material Reports, 2017, 31(14): 100 − 104. doi: 10.11896/j.issn.1005-023X.2017.014.021

    [5] 张亮, 吴文恒, 卢林, 等. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29 − 35.

    Zhang Liang, Wu Wenheng, Lu Lin, et al. Effect of heat In parameters on temperature field in Inconel 718 alloy during selecctive laser melting[J]. Journal of Materials Engineering, 2018, 46(7): 29 − 35.

    [6]

    Barbosaa L H S, Modenesia P J, Godefroidb L B, et al. Fatigue crack growth rates on the weld metal of high heat input submerged arc welding[J]. International Journal of Fatigue, 2019, 119: 43 − 51. doi: 10.1016/j.ijfatigue.2018.09.020

    [7]

    Dai Hong, Xia Xiwei, Fang Naiwen, et al. Effect of the heat input on microstructure and properties of submerged arc welded joint of 08Cr19MnNi3Cu2N stainless steel[J]. China Welding, 2019, 28(3): 48 − 53.

    [8]

    Essam Ahmed, Ramy Ahmed, AEL-Nikhaily, et al. Effect of heat input and filler metals on weld strength of gas tungsten arc welding of AISI 316 weldments[J]. China Welding, 2020, 29(1): 8 − 16.

    [9] 金礼, 徐敏, 薛家祥, 等. 热输入对铝合金双脉冲MIG焊接头性能的影响[J]. 焊接学报, 2018, 39(1): 89 − 92.

    Jin Li, Xu Min, Xue Jiaxiang, et al. Effect of line energy on properties of aluminum alloy joints in double pulsed MIG welding[J]. Transactions of the China Welding Institution, 2018, 39(1): 89 − 92.

    [10]

    Ye Xin, Hua Xueming, Wang Min, et al. Controlling hot cracking in Ni-based Inconel 718 superalloy cast sheets during tungsten inert gas welding[J]. Journal of Materials Processing Technology, 2015, 222: 381 − 390. doi: 10.1016/j.jmatprotec.2015.03.031

    [11] 叶欣, 华学明, 吴毅雄, 等. 718合金TIG焊热影响区组织变化[J]. 焊接学报, 2015, 36(8): 97 − 100.

    Ye Xin, Hua Xueming, Wu Yixiong, et al. Microstructure evolution of HAZ of TIG welded Ni-based 718 superalloy[J]. Transactions of the China Welding Institution, 2015, 36(8): 97 − 100.

    [12]

    Wang L, Yao Y, Dong J, et al. Eeffect of cooling rates on segregation and density variation in the mushy zone during solidification of superalloy Inconel 718[J]. Chemical Engineering Communications, 2010, 197(12): 1571 − 1585. doi: 10.1080/00986445.2010.493101

    [13]

    Manikandan S G K, Sivakumar D, Prasad Rao K, et al. Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone[J]. Journal of Materials Processing Technology, 2014, 214(2): 358 − 364. doi: 10.1016/j.jmatprotec.2013.09.006

    [14]

    Manikandan S G K, Sivakumar D, Kamaraj M, et al. Laves phase control in Inconel718 weldments[J]. Materials Science Forum, 2012, 710: 614 − 619. doi: 10.4028/www.scientific.net/MSF.710.614

    [15]

    Manikandan S G K, Sivakumar D, Prasad Rao K, et al. Microstructural characterization of liquid nitrogen cooled alloy 718 fusion zone[J]. Journal of Materials Processing Technology, 2014, 12: 3141 − 3149.

    [16]

    Rahimi A, Shamanian M, Rahimi A, et al. A Comparative study on direct and pulsed current micro-plasma arc welding of alloy Ti–6Al–4V[J]. Transactions of the Indian Institute of Metals, 2018, 71(12): 1 − 8.

    [17]

    Jianping H, Chen H, Fujie J, et al. Research on digitalization of high frequency microplasma arc welding machine with small welding current[J]. Rare metal materials and engineering, 2011, 40(4): 79 − 83.

    [18] 龚淼, 戴士杰, 贾鹏, 等. 航空发动机叶片MPAW修复传热建模及冷却方法研究[J]. 焊接学报, 2019, 40(7): 24 − 30.

    Gong Miao, Dai Shijie, Jia Peng, et al. Heat transfer modeling and cooling method for aeroengine blade MPAW Repair[J]. Transactions of the China Welding Institution, 2019, 40(7): 24 − 30.

    [19]

    Dai Shijie, Gong Miao, Li Wenwang, et al. Research on cooling method in surfacing repair process of aero compressor blade[J]. Mathematical Problems in Engineering, 2020(02): 1 − 19.

  • 期刊类型引用(1)

    1. 奥妮,何子昂,吴圣川,彭鑫,吴正凯,张振先,祝弘滨. 激光增材制造AlSi10Mg合金的力学性能研究进展. 焊接学报. 2022(09): 1-19+113 . 本站查看

    其他类型引用(1)

图(15)  /  表(4)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  26
  • PDF下载量:  25
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-06-01
  • 网络出版日期:  2020-10-21
  • 刊出日期:  2020-11-22

目录

    /

    返回文章
    返回