Microstructure and properties of nickel-based single crystal superalloy brazed joints
-
摘要: 采用一种含B,Si的镍基合金钎料钎焊CMSX-4单晶高温合金,利用SEM,EPMA分析接头的微观组织与相组成,探究降熔元素B和Si的扩散机制及接头形成机理. 结果表明,不同间隙焊缝的微观组织相似,相组成相同,但随着间隙的增加,焊缝中的硼化物析出相增多,同时出现微孔等缺陷;对于相同焊缝间隙的接头,随着保温时间的延长,焊缝中的硼化物相的平均尺寸在一定程度上增大,且分布更加集中,母材与焊缝间的界面连接层厚度增加. 钎焊过程中,B元素集中分布于焊缝中心区,与Cr,W,Mo等元素反应,形成脆性硼化物相M3B2,B元素未向母材中扩散,近焊缝区中未见硼化物相析出;Si元素不仅在焊缝中心区形成镍硅化物相,也向母材中扩散,在近焊缝区形成含Si元素的镍基固溶体. 对不同焊缝间隙与保温时间的单晶钎焊接头在980 ℃/100 MPa条件下进行持久性能测试. 结果表明,单晶钎焊接头的持久寿命随着焊缝间隙的增加而降低,随保温时间的延长而升高,但当保温时间延长至30 min以上时,接头持久寿命没有显著增加.Abstract: The CMSX-4 single crystal superalloy was brazed by a Ni-based braze alloy containing melting point depressant elements B and Si, and the microstructure and element distribution of the joint were analyzed by SEM and EPMA. The diffusion mechanism of the melting point depressant elements B and Si and the forming mechanism of joint were investigated. The results indicated the joints with different brazing gap demonstrated similar microstructure and phase composition. However, as the width of the brazing gap increased, the precipitation of boride in the seam increased, while defects such as pores began to appear simultaneously. As the holding time increased, the average size of boride slightly increased and its distribution is more concentrated, and the thickness of the interface bonding zone between the base material and the brazing seam increased. During the brazing process, B mainly concentrated on the central of the seam and reacted with elements such as Co, W, Mo, etc. to form a brittle boride phase M3B2. Note that no brittle phase precipitated in the near-seam base metal. It can be inferred that B does not diffuse into the base metal. The Si element not only formed a silicide phase in the central of the seam but also diffused into the matrix material, thereby forming a Si-containing solid solution phase in the near the brazing seam. The stress rupture properties of joints with different gap and holding time were tested at 980 °C/100 MPa. It was found that the stress rupture life of the joint decreased with the increase of the weld gap, and increased with the extension of the holding time. When the holding time further prolonged, the stress rupture life was not significantly increased.
-
Keywords:
- single crystal superalloy /
- brazing gap /
- holding time /
- stress rupture property
-
-
表 1 CMSX-4单晶合金与镍基钎料的成分(质量分数,%)
Table 1 Compositions of CMSX-4 single crystal superalloy and Ni-based braze alloy
元素 Co Cr W Mo Al Ti Si B Re Ni CMSX-4 9.3 ~ 10 8.5 ~ 10 6.0 ~ 6.6 0.5 ~ 0.7 5.4 ~ 5.7 0.9 ~ 1.1 — — 2.8 ~ 3.0 余量 钎料 5 ~ 10 6 ~ 12 2 ~ 6 2 ~ 6 2 ~ 6 0.5 ~ 3 0.2 ~ 4 0.2 ~ 2 — 余量 -
[1] 孙晓峰, 金涛, 周亦胄, 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1 − 20. Sun Xiaofeng, Jin Tao, Zhou Yizhou, et al. Research progress of nickel-base single crystal superalloys[J]. Materials China, 2012, 31(12): 1 − 20.
[2] 张小丽, 周亦胄, 金涛, 等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48(10): 1299 − 1236. Zhang Xiaoli, Zhou Yizhou, Jin Tao, et al. Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2012, 48(10): 1299 − 1236.
[3] Ma Dexin. Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metallurgica Sinica, 2015, 51(10): 1179 − 1190.
[4] Lang Bo, Chai Lu, Hou Jinbao, et al. Microstructure - properties relationship of transient liquid phase diffusion bonded a third generation single crystal super alloy joint[J]. China Welding, 2017, 26(1): 54 − 59.
[5] 李小强, 程准, 邱昊, 等. 镍基高温合金焊接修复技术的研究进展[J]. 材料导报, 2017, 31(S1): 541 − 545. Li Xiaoqiang, Cheng Zhun, Qiu Hao, et al. Research progress in repair welding technology of Ni-based superalloy[J]. Materials Reports, 2017, 31(S1): 541 − 545.
[6] 郎波, 侯金保, 郭德伦, 等. 单晶高温合金的过渡液相扩散焊[J]. 焊接学报, 2015, 36(12): 93 − 96. Lang Bo, Hou Jinbao, Guo Delun, et al. Transient liquid phase (TLP) diffusion bonded single crystal superalloy[J]. Transactions of the China Welding Institution, 2015, 36(12): 93 − 96.
[7] Li Wen, Jin Tao, Sun Xiaofeng, et al. TLP bonding of Ni-base single crystal superalloy[J]. Acta Metallrugica Sinica, 2001, 37(11): 1165 − 1168.
[8] Zhang L X, Sun Z, Xue Q, et al. Transient liquid phase bonding of IC10 single crystal with GH3039 superalloy using BNi2 interlayer: Microstructure and mechanical properties[J]. Materials & Design, 2016, 90: 949 − 957.
[9] Wang Guanglei, Sun Yuan, Wang Xinguang, et al. Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature[J]. Journal of Materials Science & Technology, 2017, 33(10): 1219 − 1226.
[10] 庄鸿寿, Lugscheider E. 高温钎焊[M]. 北京: 国防工业出版社, 1989. Zhuang Hongshou, Lugscheider E. High temperature brazing[M]. Beijing: National Defence Industry Press, 1989.
[11] Zhang Sheng, Guo Delun, Su Jin, et al. Study on microstructure and property of K418B superalloy wide gap brazed joints[J]. China Welding, 2016, 25(4): 20 − 26.
[12] Esmaeili H, Mirsalehi S E, Farzadi A. Vacuum TLP bonding of Inconel 617 superalloy using Ni-Cr-Si-Fe-B filler metal: Metallurgical structure and mechanical properties[J]. Vacuum, 2018, 152: 305 − 311. doi: 10.1016/j.vacuum.2018.03.048
[13] 孙元, 侯星宇, 金涛, 等. DD5单晶高温合金钎焊接头的微观组织和力学性能分析[J]. 焊接学报, 2017, 38(1): 117 − 120. Sun Yuan, Hou Xinyu, Jin Tao, et al. Microstructure and mechanical properties of DD5 single crystal superalloy brazing joint[J]. Transactions of the China Welding Institution, 2017, 38(1): 117 − 120.
[14] Saha R K, Khan T I. Microstructural developments in TLP bonds using thin interlayers based on Ni-B coatings[J]. Materials Characterization, 2009, 60(9): 1001 − 1007. doi: 10.1016/j.matchar.2009.04.002
[15] Sun Yuan, Liu Jide, Li Bo, et al. Microstructure evolution of single crystal superalloy DD5 joints brazed using AWS BNi-2 filler alloy[J]. Materials Research Innovations, 2014, 18(14s): 341.
[16] 孙元, 刘纪德, 侯星宇, 等. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制[J]. 金属学报, 2016, 52(7): 875 − 882. Sun Yuan, Liu Jide, Hou Xinyu, et al. Microstructure evolution and interfacial forming mechanism of wide gap brazing of DD5 single crystal superalloy[J]. Acta Metallurgica Sinica, 2016, 52(7): 875 − 882.
[17] 侯星宇, 孙元. 钎焊温度对CMSX-4单晶高温合金接头组织与性能的影响[J]. 焊接, 2019(1): 40 − 44. Hou Xinyu, Sun Yuan. Effect of brazing temperature on microstructure and mechanical properties of CMSX-4 single crystal superalloy brazed joint[J]. Welding & Joining, 2019(1): 40 − 44.
[18] Pouranvari M, Ekrami A, Kokabi A H. Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni–Si–B ternary filler alloy[J]. Journal of Alloys and Compounds, 2013, 563: 143 − 149. doi: 10.1016/j.jallcom.2013.02.100
[19] Pouranvari M, Ekrami A, Kokabi A H. Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy[J]. Journal of Alloys and Compounds, 2009, 469(1/2): 270 − 275. doi: 10.1016/j.jallcom.2008.01.101
-
期刊类型引用(14)
1. 魏利,尧健,张建庭,孙浩华,李砚卿,肖磊. DD5单晶合金瞬时液相扩散焊接头组织性能研究. 稀有金属材料与工程. 2025(02): 413-420 . 百度学术
2. 胡彭钦,王栋,卢玉章,张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响. 材料研究学报. 2025(03): 161-171 . 百度学术
3. 刘保侠. K644钴基合金钎焊接头组织与性能. 焊接. 2024(02): 57-62+73 . 百度学术
4. 张永志,王炜,黄钲钦,黄佳华. W元素对单晶合金TLP扩散焊微观组织与性能的影响. 焊接学报. 2024(05): 98-104 . 本站查看
5. 贺彤,王诗洋,李可馨,侯星宇,孙元. 混合钎料对镍基单晶高温合金大间隙钎焊接头组织和性能的影响. 焊接. 2024(06): 1-8 . 百度学术
6. 孙瀚,程战,孙华为,孙志鹏,王宇,李日榜,王冰. 铁基粉末对感应钎涂镍基/金刚石复合钎涂层性能的影响. 机械制造. 2024(10): 65-68+77 . 百度学术
7. 刘晓芳,常云峰,秦建,沈元勋,钟素娟. 镍基高温合金焊接工艺研究进展. 焊接. 2024(12): 47-55 . 百度学术
8. 司浩,秦建,钟素娟,龙伟民,路全彬,沈元勋. 感应加热金刚石/镍基复合涂层微观组织与性能. 稀有金属材料与工程. 2023(03): 1027-1035 . 百度学术
9. 舒坤,乔红超,赵吉宾,陈燕,孙博宇,杨玉奇,韩岳旺. 激光冲击强化对焊缝组织性能影响的研究进展. 表面技术. 2023(07): 41-54 . 百度学术
10. 雷瑛,李达,罗森怡,李刚. 刀具表面SLM制备镍基合金涂层组织及磨损性能分析. 应用激光. 2023(09): 32-36 . 百度学术
11. 周标,王浩,任新宇,邱嘉玉,潘晖. 采用BNi-5钎料钎焊K417G高温合金的界面组织和力学性能. 焊接. 2023(12): 12-16 . 百度学术
12. 马平义,祖清明,陈旭,周贤军,黄裕乾,石文展,彭赫力. 钎焊压力对GH4099蜂窝夹层结构焊接质量影响研究. 模具技术. 2023(06): 34-42 . 百度学术
13. 王浩,吴欣,程耀永,毛唯. K480镍基高温合金钎焊接头组织与性能. 焊接. 2022(04): 37-42+47 . 百度学术
14. 韩晨阳,孙耀宁,徐一飞,张瑞华,路超,赵芳. 激光熔覆镍基合金磨损及电化学腐蚀性能研究. 表面技术. 2021(11): 103-110 . 百度学术
其他类型引用(7)