TiB2-based ceramics/42CrMo alloy layered gradient material mechanical test and structure design
-
摘要: 在以往超重力场合成梯度材料的基础上,制备出组分含量TiB2-TiC-Fe呈连续梯度变化的TiB2基陶瓷/42CrMo合金梯度材料. 对材料进行XRD,SEM,硬度测试以及三点弯曲强度测试,并采用电测法获取陶瓷基体部分的弹性模量,并在此基础上,对中间过渡区的弹性模量进行拟合,最后再采用解析方法计算梯度材料的应力应变分布. 结果表明,TiB2基陶瓷/42CrMo合金相界呈连续梯度变化,硬度自陶瓷顶部至合金底部呈梯度递减.三点弯曲测试发现TiB2基陶瓷/42CrMo合金材料具有类似于金属的塑性变形特征,从而出现明显的失效延迟行为. 采用电测法得出纯陶瓷组分的弹性模量约为560 GPa,参数拟合得出中间过渡区的弹性模量变化形式更趋近于三角函数,计算得出的应力表示自金属底部出现损伤,而后裂纹向陶瓷顶部方向扩展,与该材料试验现象契合.Abstract: Based on the previous supergravity field synthesis gradient materials, a TiB2-based ceramic /42CrMo graded material with continuous gradient content of TiB2-TiC-Fe has been preparatived. XRD, SEM, hardness test and three-point bending strength test on the materials are conducted. And electrical measuring method is used to obtain ceramic substrate part of elasticity modulus.The elastic modulus of the intermediate transition zone is fitted. Finally, an analytical method is used to calculate the stress-strain distribution of the graded material.The results show that the ceramic/alloy phase boundary changes in a continuous gradient, and the hardness decreases in a gradient from ceramic to metal. Three point bending test found that the type of material has similar to the metal plastic deformation features. Therefore, obvious failure delay behavior appears. The elastic modulus of pure ceramic is about 560 GPa. The variation form of elastic modulus in the intermediate transition zone is closer to trigonometric function. The calculated stress indicates that the damage occurs from the bottom of the metal, and then the crack spreads to the top of the ceramic, which is consistent with the experimental phenomenon of this type of material.
-
Keywords:
- graded materials /
- mechanical properties /
- damage failure /
- strain measurement
-
-
表 1 试验材料的化学成分
Table 1 Chemical compositions of experimental material
材料 粒度d/μm 化学成分(质量分数,%) Ti Fe Al Si B4C C B B2O3 Ti粉 ≤ 39 ≥ 98.5 < 0.10 < 0.10 < 0.10 — — — — B4C粉 ≤ 30 — — — — ≥ 97.5 < 0.20 < 0.15 < 0.30 表 2 42CrMo合金调质钢的化学成分(25 ℃)(质量分数,%)
Table 2 Chemical compositions of of 42CrMo steel
Fe C Cr Mo S P Si Cu Ni Mn 96.80 ~ 97.77 0.38 ~ 0.45 0.90 ~ 1.20 0. 15 ~ 0.25 ≤ 0.035 ≤ 0.035 0.17 ~ 0.37 ≤ 0.03 ≤ 0.03 0.50 ~ 0.80 表 3 42CrMo合金调质钢的力学性能(25 ℃)
Table 3 Mechanics properties of 42CrMo steel
密度 $ \rho $ /(g·cm−3)熔点
Tm/℃抗拉强度
Rm/MPa屈服强度
ReL/MPa冲击韧性
ak/(J·cm−2)热导率
λ/(W·m−1·K−1)线膨胀系数
a/(10−6K−1)7.85 1 399 ≥ 1 080 ≥ 931 ≥ 78 6.8 11.1 -
[1] 张宇昆, 陈继春, 张劲松. 碳化硅复合材料与碳钢钎焊接头的抗剪强度及微观结构[J]. 焊接学报, 2020, 41(7): 78 − 82. doi: 10.12073/j.hjxb.20191010001 Zhang Yukun, Chen Jichun, Zhang Jinsong. Sears strength and microstructure of SiC composites welded with carbon brazing joints[J]. Transactions of the China Welding Institution, 2020, 41(7): 78 − 82. doi: 10.12073/j.hjxb.20191010001
[2] Zhou Y C, Lin Q Y, Hong J, et al. Optimal design of functionally graded material for stress concentration reduction[J]. Structures, 2021, 29: 561 − 569. doi: 10.1016/j.istruc.2020.11.053
[3] Yu W, Zheng Y, Yu Y, et al. The reaction mechanism analysis and mechanical properties of large-size Al2O3/ZrO2 eutectic ceramics prep-ared by a novel combustion synthesis[J]. Ceramics International, 2018, 44(11): 987 − 995.
[4] 谢玉江, 杨玉乐, 迟长泰. 不同气氛激光直接沉积成形24CrNiMo合金钢的显微组织和力学性能[J]. 焊接学报, 2020, 41(5): 19 − 24. doi: 10.12073/j.hjxb.20190905001 Xie Yujiang, Yang Yule, Chi Changtai. Microstructure and mechanical properties of laser direct deposition forming different atmosphere 24CrNiMo steel[J]. Transactions of the China Welding Institution, 2020, 41(5): 19 − 24. doi: 10.12073/j.hjxb.20190905001
[5] Vatulyan A O, Yurov V O. On the determination of the mechanical characteristics of rod elements made of functionally graded materials[J]. Mechanics of Solids, 2021, 55(6): 907 − 917.
[6] 王子晨, 曹健, 代翔宇, 等. Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金[J]. 焊接学报, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002 Wang Zichen, Cao Jian, Dai Xiangyu, et al. Ag-Cu+WC composite solder brazing ZrO2 ceramic and TC4 alloy[J]. Transactions of the China Welding Institution, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002
[7] Zhao K, Zhang G H, Ma G Y, et al. Microstructure and mechanical properties of titanium alloy/zirconia functionally graded materials prepared by laser additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 56(1): 616 − 622.
[8] Abdelrahman Wael G. Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT[J]. Structural Engineering and Mechanics, 2020, 74(1): 83 − 90.
[9] Garshin A P, Kulik V I, Nilov A S. Analysis of occurrence, properties, and methods of minimizing production defects in ceramic composites with an sic-matrix prepared by liquid-phase siliciding[J]. Refractories and Industrial Ceramics, 2019, 60(4): 376 − 384. doi: 10.1007/s11148-019-00371-5
[10] Gatzen C, Mack D E, Guillon O, et al. YAlO3—A novel environmental barrier coating for Al2O3/Al2O3–ceramic matrix composi-tes[J]. Coatings, 2019, 9(10): 2 − 13.
[11] Li D H, Yang X, Qian R L, et al. Static and dynamic response analysis of functionally graded material plates with damage[J]. Mechanics of Advanced Materials and Structures, 2020, 27(2): 94 − 107. doi: 10.1080/15376494.2018.1459974
[12] 李维锴, 韩保红, 赵忠民. 装甲防护陶瓷材料研究进展[J]. 特种铸造及有色合金, 2018, 38(3): 259 − 262. Li Weikai, Han Baohong, Zhao Zhongmin. Armor ceramic materials is reviewed[J]. Special Casting and Nonferrous Alloys, 2018, 38(3): 259 − 262.
[13] 赵忠民, 彭文斌. 硼化钛基陶瓷/钛合金梯度纳米结构复合材料组织演化、损伤失效与抗弹性能研究[J]. 现代技术陶瓷, 2016, 37(6): 412 − 424. Zhao Zhongmin, Peng Wenbin. Titanium bo-ride base gradient nano-structured titanium alloy/ceramic composite materials organization evolution and damage failure and resistance to study[J]. Generation of Ceramic Technology, 2016, 37(6): 412 − 424.
[14] Recep G, Murat A, Kemal M A. Experimental and numerical investigations of low velocity impact on functionally graded circular plates[J]. Composites:Part B, 2014, 59: 21 − 32. doi: 10.1016/j.compositesb.2013.11.022