-
摘要: 纳米铜基导电薄膜具有高导电、高性价比且易与柔性基材结合等优点,在下一代柔性电子产品领域具有广泛的应用前景. 然而,纳米铜基导电薄膜在制备的过程中易被氧化,成为制备高导电纳米铜基导电薄膜的难题. 文中从油墨配方、印刷方法、烧结方法等方面系统的介绍了纳米铜基柔性导电薄膜的制造方法,着重介绍了目前抗氧化油墨的设计思路,阐明了目前柔性电子先进微纳连接技术的工艺流程,对比了其优缺点及适用范围,并列举了纳米铜基导电薄膜在下一代柔性电子产品领域的典型应用. 在此基础上,对纳米铜柔性导电薄膜制造尚存的主要问题进行了总结,并对其未来发展趋势进行了展望.
-
0. 序 言
焊缝跟踪技术是自动化焊接控制首先要解决的问题[1]. 由于电弧传感器具有结构紧凑、不需要附加设备、价格低、实时性强和能够抵抗磁偏吹干扰等特点,已经被成功地应用于工业生产中[2-3].
由于窄间隙焊接过程中,坡口侧壁与焊丝接近平行,导电嘴到坡口底部的距离几乎不发生改变[4],电弧电信号的改变主要受磁偏吹引起,因此窄间隙电弧传感主要是通过距离侧壁不同距离时磁偏吹强度不同来反映焊缝位置. 已经有不少学者针对窄间隙电弧信号的传感特征开展了研究[5-7]. 为了提高窄间隙焊接摆动电弧传感的精度和可靠性,需要同步采集焊枪摆动位置信号和焊接电压电流信号及电弧图像信号进行分析. Agostinho[8]和罗雨等人[9]采用从电机编码器中采集位置信息的方式获得摆动位置信号,将焊枪摆动位置信号同电压电流信号对应起来. 黎文航等人[10]利用光电开关,不仅采集到焊接电压电流信号,而且获得了电弧运动到侧壁位置时的图像信息. 由于联轴器精度、丝杠间隙等机械系统误差的存在,从电机编码器提取的位置信息并不能完全反映焊枪位置,而且上述研究者并也没有同步提取焊接全过程中的电信号、电弧图像和焊枪位置,很难深入的研究电弧在窄间隙坡口中的行为和电弧传感特征参数的关系.
通过高精度激光位移传感器测量焊枪位置,基于TMS320F2812和Labview开发了一种窄间隙焊接摆动电弧传感测试试验系统,不仅能够准确获取焊枪位置信息,而且能够实现电弧图像、电压电流信号、焊枪位置的同步提取,为深入研究窄间隙摆动电弧传感特征奠定了必要的基础.
1. 试验系统主体结构设计
试验系统包括机械模块,控制模块,焊接模块和信号同步采集模块.设计如图1a所示的焊枪摆动器,两个步进电机分别控制焊枪的左右摆动和高低调整,在焊枪摆动器上安装激光位移传感器,实时测量焊枪的摆动位置. 选用美国Banner公司生产的LG10A65PIQ激光位移传感器,该传感器对平面白色物体的最高分辨率达3 μm. 焊枪摆动器可以在试验台上整体移动完成摆动焊接,也可以保持摆动器原地摆动,通过试件移动完成焊接,如图1b所示.
控制模块用来完成系统运动控制和通信控制. 通过TMS320F2812控制步进电机完成摆动器的运动控制、控制伺服电机完成工件行走或者摆动器移动的运动控制. 通过搭建ROB5000模块控制焊机的起弧、熄弧、送丝、送气、模式选择、电流和电压等参数调节,实现焊机通信控制;通过CAN总线作为各个模块之间的通信连接方式,以具有参数设置和命令控制功能的遥控器为系统的主通信节点,焊接摆动控制器、焊接通信控制器等作为系统的多个子节点.
焊接模块由焊接电源、送丝机和保护气体组成. 试验系统同步采集四路焊接电弧信号,其中电流电压通过霍尔传感器获得;摆动焊枪位置信号由LG10A65FPIQ激光位移传感器获得. TMS320F2812对上述三路信号数据采集、传输,上位机Labview接收数据并进行处理. 电弧图像由1888-SU-01-C相机采集,上位机软件Ramdisk通过同步触发器来控制四路信号同步采集的启动和停止.
2. 电弧信号同步采集系统设计
四路电弧信号的采集由上位机PC在开发的软件Ramdisk中进行控制,上位机发送指令给同步触发器,同步触发器控制两路TTL信号的电平变化,可控制信号采集的开始、停止,其原理如图2所示.
电弧图像由1888-SU-01-C相机采集,同步触发器发出高电平信号经集电极开路晶体管电路控制相机开始采集数据,采集速率为4 000帧/秒,电弧图像采集到之后直接汇入PC机,由Ramdisk软件进行信息提取和保存.
焊接电流通过闭环式霍尔电流传感器CHB-1000S获取,电压信号通过霍尔电压传感器CHV-25P获取. 由于TMS320F2812的AD模块最大允许采集电压为3.3 V,将焊接电压电流信号提取之后, 经过限流电阻按照1 000:1等比例缩小后传输到TMS320F2812的AD模块进行采样,其中电流信号传输到ADCINA4通道,电压信号传输到ADCINA5通道.
焊枪摆动位置信号由LG10A65FPIQ激光位移传感器获取,激光位移传感器输出4 ~ 20 mA电流,流经限流电阻后转换为0.6 ~ 3 V电压. 由于焊接过程存在机械振动且摆动信号频率很低,先经Buttworth滤波电路滤去频率相对较高噪声,电路如图3所示. 电压输入到低通滤波电路,滤波后的电压信号由TMS320F2812的AD模块中ADCINA6采样通道进行采样.
图3中VCC + = + 12 V,VCC − = −12 V,R3 = 120 Ω,R1 = R2 = 27 KΩ,C1 = C2 = 0.1 μf,R4 = 10 Ω. 则电路的截止频率为
$$ f = \frac{1}{{2{\text π} RC}} \approx 58.9\;{\rm{Hz}} $$ (1) 二阶低通滤波器的带通增益为
$${A_{VP}} = \frac{{{\mathop{\rm R}\nolimits} 3 + R4}}{{{\mathop{\rm R}\nolimits} 3}} = 1.083$$ (2) 当上位机发出开始采集信号的指令时,同步触发器发送高电平信号启动TMS320F2812的AD模块进行采样次数为8倍的过采样,以滤掉偏差值过大噪声信号,过采样后AD采样频率4 000 Hz. 数据采集流程如图4所示.
由于AD模块的高速采样与SCI串口低速发送间存在冲突,为防止数据在传输过程中丢失,在DSP内部开发数据缓冲区sine1[2],sine2[2]和sine3[2] 及数据发送缓冲区transfer1[2],transfer2[2]和transfer3[2]. AD模块采集到电压信号数据后存放到sine1数组内,采满之后将该数组内的数据赋值给数据传输数组transer1;AD模块采集到电流信号数据后存放到sine2数组内,采满之后将该数组内的数据赋值给transer2;AD模块采集到焊枪摆动位置信号数据后存放到sine3数组内,采满之后将该数组内的数据赋值给transfer3数组.
当主程序启动SCI串口发送时,SCIA串口准备就绪即可将数据发送出去. 由于SCI串口是异步发送机制,为防止接收过程产生错误必须在每个数取前四位的基础上加一个标识位字符. 在电压数据前加入字符A,在电流数据前加入字符B,在焊枪摆动位置数据前加入字符C. 上位机Labview接收数据后,每读到字符A,B,C,接收下四个字符对应的数值并组成四位数,即可接收到串口传输的电弧信号数据.
SCI串口发送采用查询发送方式其流程如图5所示.
上位机根据激光位移传感器的信号转换关系得到位移(L/mm)和二阶Buttworth低通滤波电路输出电压(U/V)的转换公式:
$$L = 0.83U + 62.5$$ (3) 将字符C后接收到的数据转换成焊枪摆动位置信号并存储. 由于焊接电流信号的量级为几百安,焊接电压信号的量级为几十伏,为了观察的更为直观,将通过霍尔传感器接收到的电压电流信号缩小,得到幅值与焊枪摆动位置信号幅值数量级相同的数据并储存.
为了更方便的处理焊枪摆动位置信号,Labview程序设计有置位功能. 置位功能是将采集到的起始位置数据设置为0点,所有数据均跟随起始位置数据在0点附近上下波动,并将处理后的数据保存成新的文档. 在信号传输过程存在大量干扰,上位机接收到的电弧信号数据中掺杂了大量噪声信号,因此Labview程序设计有低通滤波功能. 焊枪摆动频率大约为2 Hz,设置2阶Buttworth低通滤波器截止频率为3 Hz,并将滤波前后的时域图形直观的显示出来,将滤波后的数据保存成新的文档.
当上位机发出停止采集指令时,同步触发器发出停止信号,1888-SU-01-C相机、TMS320F2812均停止工作,信号采集停止. 由于四路信号同时开始采集,同时停止采集,每个电流电压的值和焊枪摆动位置信号的值实时对应,且TMS320F2812与1888-SU-01-C相机采样频率相等,同一时刻电流电压值和焊枪摆动位置信号值对应一张电弧图像照片,可以实现电弧图像、焊接电流、焊接电压和焊枪摆动位置信号的同步采集,进而可以清楚的了解电弧每一时刻的形态和对应的电弧信号数据.
3. 试验系统功能测试
所开发的试验系统如图6所示. 在设计试验系统上进行窄间隙摆动焊接试验. 采用Fronius的TPS3200作为焊接电源,选择脉冲焊模式,设置焊枪摆动幅度3 mm,摆动速度45 mm/s,焊接速度4 mm/s,送丝速度5 m/min,弧长修正为5. Labview软件中电弧信号采集结果与得到焊接结果如图6所示.
从试验结果可以看出在焊接过程中电压电流呈现出脉冲的图形,但存在电压电流信号不稳定的情况;置位后的焊枪摆动信号还存在传输过程产生的噪声;经过低通滤波后的焊枪摆动信号近似为正弦信号,且幅值仍近似为3 mm,符合试验预期的结果.
将采集到的焊接电压电流信号,焊枪摆动位置信号在Matlab中绘制得到曲线,取前0.4 s的焊接信号. 根据位置信号和焊接电弧图像的采样频率,每隔一个焊枪摆动位置信号的值可以找到一张焊接电弧图像. 按照信号对应关系抽取一个摆动行程内焊枪在不同位置时所对应的6张电弧图像的照片,焊接电弧信号同步采集结果如图7所示. 图中红色曲线为焊枪摆动位置信号,黑色曲线为电压信号(十伏),紫色曲线为电流信号(百安).
由试验结果可以很清晰地看到焊接过程中每一时刻的电压电流信号,焊枪摆动位置信号的值,按照对应关系可以找到对应的电弧图像.
4. 结 论
(1) 通过高精度激光位移传感器测量焊枪位置、基于TMS320F2812和Labview软件开发了摆动焊炬电弧传感试验系统.
(2) 所开发的试验系统不仅能够实现窄间隙摆动焊炬焊接,而且能够同步采集焊接全过程的电弧图像、焊接电压、焊接电流和焊枪摆动位置信息,为深入地研究焊接过程电弧传感规律、电弧在窄间隙坡口中的行为奠定了必要的基础.
-
图 3 热烧结工艺示意图(RT表示室温,LT表示低温,HT表示高温)[56]
Figure 3. Schematic diagram of the thermal sintering process (RT indicates room temperature, LT indicates low temperature, and HT indicates high temperature)
表 1 不同前驱体纳米铜基导电油墨工艺、方法和稳定性
Table 1 Processes, methods and stability of copper nanobased conductive inks with different precursors
前驱体 基板 印刷—烧结方法 方阻/电阻率 温度—时间 参考文献 铜@银纳米颗粒 玻璃 丝网印刷—热烧结 113 mΩ·sq−1 室温—三周 [31] 铜@银纳米颗粒 玻璃 旋转丝网印刷—热烧结 0.60 Ω·sq−1 室温-两个月 [32] 铜@银纳米颗粒 聚酰亚胺(PI) 喷墨打印—热烧结 3.21 μΩ·cm 156 ℃-40 d [28] 铜@银纳米颗粒 玻璃 喷墨打印—热烧结 11 μΩ·cm NA [33] 铜@银纳米颗粒 玻璃 平面丝网印刷—热烧结 0.18 Ω·sq−1 室温-六个月 [34] 铜@银纳米颗粒 PI 旋转丝网印刷—激光烧结 28.5 μΩ·cm NA [35] 铜@银纳米颗粒 玻璃 旋转丝网印刷—热烧结 13.7 μΩ·cm NA [36] 铜@银纳米线 聚氨基甲酸酯(PU) 喷墨打印—热烧结 35 Ω·sq−1 140 ℃-500 h [37] 铜@金纳米线 玻璃 NA—热烧结 35 Ω·sq−1 80 ℃-700 h [38] 氧化铜纳米颗粒 PI NA—激光烧结 31 μΩ·cm NA [30] 氧化铜纳米颗粒 玻璃 旋转丝网印刷—激光烧结 9.5 μΩ·cm NA [39] 氧化铜纳米颗粒 聚乙烯(PE) 喷墨打印—强脉冲光烧结 3.1 μΩ·cm NA [40] 氧化铜纳米颗粒 聚对苯二甲酸乙二醇酯(PET) 喷墨打印—强脉冲光烧结 9 μΩ·cm NA [41] -
[1] Lee H B, Bae C W, Duy L T, et al. Mogul-patterned elastomeric substrate for stretchable electronics[J]. Advanced Materials, 2016, 28(16): 3069 − 3077. doi: 10.1002/adma.201505218
[2] Wang Z, Xing R, Yu X, et al. Adhesive lithography for fabricating organic electronic and optoelectronics devices[J]. Nanoscale, 2011, 3(7): 2663 − 2678. doi: 10.1039/c1nr10039d
[3] Chen C W, Kang H W, Hsiao S Y, et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition[J]. Advanced Materials, 2014, 26(38): 6647 − 6652. doi: 10.1002/adma.201402461
[4] Parashkov R, Becker E, Riedl T, et al. Large area electronics using printing methods[J]. Proceedings of the IEEE, 2005, 93(7): 1321 − 1329. doi: 10.1109/JPROC.2005.850304
[5] Cai J, Zhang C, Khan A, et al. Selective electroless metallization of micro-and nanopatterns via poly (dopamine) modification and palladium nanoparticle catalysis for flexible and stretchable electronic applications[J]. ACS applied materials & interfaces, 2018, 10(34): 28754 − 28763.
[6] Li J, Zhang X, Liu X, et al. Conductivity and foldability enhancement of Ag patterns formed by PVAc modified Ag complex inks with low-temperature and rapid sintering[J]. Materials & Design, 2020, 185: 108255.
[7] Cui Z. Printed electronics: materials, technologies and applications[M]. New Jersey: John Wiley & Sons, 2016.
[8] Nguyen P Q M, Yeo L P, Lok B K, et al. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics[J]. ACS Applied Materials and Interfaces, 2014, 6(6): 4011 − 4016. doi: 10.1021/am4054546
[9] Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1486-1517.
[10] Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability[J]. Materials, 2010, 3(9): 4626 − 4638. doi: 10.3390/ma3094626
[11] 姜皎洁, 刘文涛, 黄灵阁, 等. 无线射频识别技术用导电油墨的研究[J]. 材料导报, 2015, 29(1): 121 − 126. doi: 10.11896/j.issn.1005-023X.2015.01.021 Jiang Jiaojie, Liu Wentao, Huang Lingge, et al. Research on conductive inks for radio frequency identification technology[J]. Materials Guide, 2015, 29(1): 121 − 126. doi: 10.11896/j.issn.1005-023X.2015.01.021
[12] 李金焕, 陆建辉, 王玉丰, 等. 金属银导电油墨的研究进展[J]. 电子元件与材料, 2014, 33(11): 14 − 17. doi: 10.14106/j.cnki.1001-2028.2014.11.004 Li Jinhuan, Lu Jianhui, Wang Yufeng, et al. Research progress of metallic silver conductive inks[J]. Electronic Components and Materials, 2014, 33(11): 14 − 17. doi: 10.14106/j.cnki.1001-2028.2014.11.004
[13] Bacalzo N P, Go L P, Querebillo C J, et al. Controlled microwave-hydrolyzed starch as a stabilizer for green formulation of aqueous gold nanoparticle ink for flexible printed electronics[J]. ACS Applied Nano Materials, 2018, 1(3): 1247 − 1256. doi: 10.1021/acsanm.7b00379
[14] Liu X, Kanehara M, Liu C, et al. Spontaneous patterning of high-resolution electronics via parallel vacuum ultraviolet[J]. Advanced Materials, 2016, 28(31): 6568 − 6573. doi: 10.1002/adma.201506151
[15] Guo Rumeng, Xiao Yubo, Gao Ye et al. Interfacial enhancement of Ag and Cu particles sintering using(111)-oriented nanotwinned Cu as substrate for die-attachment[J]. China Welding, 2022, 31(1): 22 − 28.
[16] Wang X, Guo W, Zhu Y, et al. Electrical and mechanical properties of ink printed composite electrodes on plastic substrates[J]. Applied Sciences, 2018, 8(11): 2101. doi: 10.3390/app8112101
[17] Stempien Z, Rybicki T, Rybicki E, et al. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique[J]. Synthetic Metals, 2015, 202: 49 − 62. doi: 10.1016/j.synthmet.2015.01.027
[18] Zhao P, Zhang R, Tong Y, et al. All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole[J]. Advanced Electronic Materials, 2020, 6(8): 1 − 10.
[19] Htwe Y Z N, Mariatti M. Surfactant-assisted water-based graphene conductive inks for flexible electronic applications[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 402 − 412. doi: 10.1016/j.jtice.2021.06.022
[20] Aziz A, Bazbouz M B, Welland M E. Double-walled carbon nanotubes ink for high-conductivity flexible electrodes[J]. ACS Applied Nano Materials, 2020, 3(9): 9385 − 9392. doi: 10.1021/acsanm.0c02013
[21] 杨婉春, 王帅, 祝温泊, 等. 低温烧结纳米铜焊膏的制备及其连接性能分析[J]. 焊接学报, 2018, 39(6): 72 − 76. doi: 10.12073/j.hjxb.2018390152 Yang Wanchun, Wang Shuai, Zhu Wenbo, et al. Preparation of low-temperature sintered nano-copper solder paste and its connection performance analysis[J]. Transactions of the China Welding Institution, 2018, 39(6): 72 − 76. doi: 10.12073/j.hjxb.2018390152
[22] Nie X, Wang H, Zou J. Inkjet printing of silver citrate conductive ink on PET substrate[J]. Applied Surface Science, 2012, 261: 554 − 560. doi: 10.1016/j.apsusc.2012.08.054
[23] 奚甡. 中外银矿资源现状分析[J]. 世界有色金属, 2012, 6: 60 − 63. Xi Shen. Analysis of the current situation of silver resources in China and abroad[J]. World Non-ferrous Metals, 2012, 6: 60 − 63.
[24] 罗晓玲. 国内外铜矿资源分析[J]. 世界有色金属, 2000, 4(4): 4 − 10. Luo Xiaoling. Analysis of domestic and foreign copper ore resources[J]. World Non-ferrous Metals, 2000, 4(4): 4 − 10.
[25] Zhou X, Guo W, Zhu Y, et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid[J]. Nanoscale, 2020, 12(2): 563 − 571. doi: 10.1039/C9NR07248A
[26] Chen H, Lee J H, Kim Y H, et al. Metallic copper nanostructures synthesized by a facile hydrothermal method[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(1): 629 − 636. doi: 10.1166/jnn.2010.1739
[27] Zhang B, Li W, Jiu J, et al. Large-scale and galvanic replacement free synthesis of Cu@Ag core-shell nanowires for flexible electronics[J]. Inorganic Chemistry, 2019, 58(5): 3374 − 3381. doi: 10.1021/acs.inorgchem.8b03460
[28] Zhang W, Zhou Y, Ding Y, et al. Sintering mechanism of size-controllable Cu-Ag core-shell nanoparticles for flexible conductive film with high conductivity, antioxidation, and electrochemical migration resistance[J]. Applied Surface Science, 2022, 586: 152691. doi: 10.1016/j.apsusc.2022.152691
[29] Zhao J, Zhang D, Zhang X. Preparation and characterization of copper/silver bimetallic nanowires with core-shell structure[J]. Surface and Interface Analysis, 2015, 47(4): 529 − 534. doi: 10.1002/sia.5743
[30] Kang B, Han S, Kim J, et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23664 − 23670. doi: 10.1021/jp205281a
[31] Yu X, Li J, Shi T, et al. A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics[J]. Journal of Alloys and Compounds, 2017, 724: 365 − 372. doi: 10.1016/j.jallcom.2017.07.045
[32] Lee C, Kim N R, Koo J, et al. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics[J]. Nanotechnology, 2015, 26(45): 455601. doi: 10.1088/0957-4484/26/45/455601
[33] Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing[J]. Journal of Materials Chemistry, 2009, 19(19): 3057 − 3062. doi: 10.1039/b821327e
[34] Pajor-Świerzy A, Farraj Y, Kamyshny A, et al. Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 521: 272 − 280.
[35] Titkov A I, Logutenko O A, Vorobyev A M, et al. Laser sintering of Cu@Ag core-shell nanoparticles for printed electronics applications[J]. Materials Today:Proceedings, 2020, 25: 447 − 450. doi: 10.1016/j.matpr.2019.12.163
[36] Kim N R, Lee Y J, Lee C, et al. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink[J]. Nanotechnology, 2016, 27(34): 345706. doi: 10.1088/0957-4484/27/34/345706
[37] Zhang B, Li W, Nogi M, et al. Alloying and embedding of Cu-core/Ag-shell nanowires for ultrastable stretchable and transparent electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18540 − 18547.
[38] Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors[J]. Journal of the American Chemical Society, 2017, 139(21): 7348 − 7354. doi: 10.1021/jacs.7b02884
[39] Rahman M K, Lu Z, Kwon K S. Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines[J]. AIP Advances, 2018, 8(9): 095008. doi: 10.1063/1.5047562
[40] Öhlund T, Schuppert A K, Hummelgard M, et al. Inkjet fabrication of copper patterns for flexible electronics: using paper with active precoatings[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18273 − 18282.
[41] Paquet C, James R, Kell A J, et al. Photosintering and electrical performance of CuO nanoparticle inks[J]. Organic Electronics, 2014, 15(8): 1836 − 1842. doi: 10.1016/j.orgel.2014.05.014
[42] Zhang B, Li W, Jiu J, et al. Large-scale and galvanic replacement free synthesis of Cu@Ag core-shell nanowires for flexible electronics[J]. Inorganic Chemistry, 2019, 58(5): 3374 − 3381. doi: 10.1021/acs.inorgchem.8b03460
[43] Dai X, Xu W, Zhang T, et al. Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics[J]. Chemical Engineering Journal, 2019, 364: 310 − 319. doi: 10.1016/j.cej.2019.01.186
[44] Draper G L, Dharmadasa R, Staats M E, et al. Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16478 − 16485.
[45] Son S G, Park H J, Kim Y K, et al. Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics[J]. Applied Chemistry for Engineering, 2019, 30(6): 737 − 741.
[46] Lee H, Lee D, Hwang J, et al. Silver nanoparticle piezoresistive sensors fabricated by roll-to-roll slot-die coating and laser direct writing[J]. Optics Express, 2014, 22(8): 8919 − 8927. doi: 10.1364/OE.22.008919
[47] Zhu D, Wang Z, Zhu D. Highly conductive graphene electronics by inkjet printing[J]. Journal of Electronic Materials, 2020, 49(3): 1765 − 1776. doi: 10.1007/s11664-019-07920-1
[48] Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics[J]. Advanced Materials, 2014, 26(26): 4533 − 4538. doi: 10.1002/adma.201401052
[49] Lau P H, Takei K, Wang C, et al. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates[J]. Nano Letters, 2013, 13(8): 3864 − 3869. doi: 10.1021/nl401934a
[50] Mariappan D D. Nanoporous flexographic printing: fundamentals, applications and scale-up[D]. Massachusetts Institute of Technology, 2019.
[51] Søndergaard R R, Hösel M, Krebs F C. Roll-to-Roll fabrication of large area functional organic materials[J]. Journal of Polymer Science, Part B:Polymer Physics, 2013, 51(1): 16 − 34. doi: 10.1002/polb.23192
[52] Singh M, Haverinen H M, Dhagat P, et al. Inkjet printing-process and its applications[J]. Advanced Materials, 2010, 22(6): 673 − 685. doi: 10.1002/adma.200901141
[53] Khan S, Doh Y H, Khan A, et al. Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors[J]. Current Applied Physics, 2011, 11(1): S271 − S279. doi: 10.1016/j.cap.2010.11.044
[54] Gu Y, Wu A, Federici J F, et al. Inkjet printable constantan ink for the fabrication of flexible and conductive film[J]. Chemical Engineering Journal, 2017, 313: 27 − 36. doi: 10.1016/j.cej.2016.12.071
[55] Choi Y, Seong K, Piao Y. Metal-organic decomposition ink for printed electronics[J]. Advanced Materials Interfaces, 2019, 6(20): 1901002. doi: 10.1002/admi.201901002
[56] Sugiyama T, Kanzaki M, Arakawa R, et al. Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(7): 7540 − 7547. doi: 10.1007/s10854-016-4734-8
[57] 李俊龙, 徐杨, 赵雪龙, 等. 铜颗粒低温烧结技术的研究进展[J]. 焊接学报, 2022, 43(3): 13 − 24. doi: 10.12073/j.hjxb.20210225002 Li Junlong, Xu Yang, Zhao Xuelong, et al. Research progress of low-temperature sintering technology for copper particles[J]. Transactions of the China Welding Institution, 2022, 43(3): 13 − 24. doi: 10.12073/j.hjxb.20210225002
[58] Kim I, Kim J. The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors[J]. Journal of Applied Physics, 2010, 108(10): 102807. doi: 10.1063/1.3511688
[59] Gu W, Yuan W, Zhong T, et al. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits[J]. RSC Advances, 2018, 8(53): 30215 − 30222. doi: 10.1039/C8RA04468F
[60] Park B K, Kim D, Jeong S, et al. Direct writing of copper conductive patterns by ink-jet printing[J]. Thin solid films, 2007, 515(19): 7706 − 7711. doi: 10.1016/j.tsf.2006.11.142
[61] Zhai D, Zhang T, Guo J, et al. Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 424: 1 − 9.
[62] MacNeill W, Choi C-H, Chang C-H, et al. On the self-damping nature of densification in photonic sintering of nanoparticles[J]. Scientific Reports, 2015, 5(1): 1 − 13. doi: 10.9734/JSRR/2015/14076
[63] Ryu C H, Joo S J, Kim H S. Intense pulsed light sintering of Cu nano particles/micro particles-ink assisted with heating and vacuum holding of substrate for warpage free printed electronic circuit[J]. Thin Solid Films, 2019, 675: 23 − 33. doi: 10.1016/j.tsf.2019.02.020
[64] Kim H S, Dhage S R, Shim D E, et al. Intense pulsed light sintering of copper nanoink for printed electronics[J]. Applied Physics A, 2009, 97(4): 791 − 798. doi: 10.1007/s00339-009-5360-6
[65] Öhlund T, Schuppert A K, Hummelgard M, et al. Inkjet fabrication of copper patterns for flexible electronics: using paper with active precoatings[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18273 − 18282.
[66] Wang B Y, Yoo T H, Song Y W, et al. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4113 − 4119.
[67] Chung W H, Hwang H J, Kim H S. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics[J]. Thin Solid Films, 2015, 580: 61 − 70. doi: 10.1016/j.tsf.2015.03.004
[68] Paglia F, Vak D, Van Embden J, et al. Photonic sintering of copper through the controlled reduction of printed CuO nanocrystals[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25473 − 25478.
[69] Yu J H, Kang K T, Hwang J Y, et al. Rapid sintering of copper nano ink using a laser in air[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(6): 1051 − 1054. doi: 10.1007/s12541-014-0435-5
[70] 周兴汶, 廖嘉宁, 姚煜, 等. 铜微纳结构的激光直写及其应用研究进展[J]. 中国激光, 2021, 48(8): 141 − 153. Zhou Xingwen, Liao Jianing, Yao Yi, et al. Progress of laser direct writing of copper micro-nano structures and its application[J]. China Laser, 2021, 48(8): 141 − 153.
[71] Kang B, Han S, Kim J, et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23664 − 23670. doi: 10.1021/jp205281a
[72] Ohishi T, Takahashi N. Preparation and properties of copper fine wire on polyimide film in air by laser irradiation and mixed-copper-complex solution containing glyoxylic acid copper complex and methylamine copper complex[J]. Materials Sciences and Applications, 2018, 9(11): 859. doi: 10.4236/msa.2018.911062
[73] Zhou X, Guo W, Fu J, et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 2019, 494: 684 − 690. doi: 10.1016/j.apsusc.2019.07.159
[74] Kim K S, Bang J O, Choa Y H, et al. The characteristics of Cu nanopaste sintered by atmospheric-pressure plasma[J]. Microelectronic Engineering, 2013, 107: 121 − 124. doi: 10.1016/j.mee.2012.08.019
[75] Gao Y, Zhang H, Jiu J, et al. Fabrication of a flexible copper pattern based on a sub-micro copper paste by a low temperature plasma technique[J]. RSC Advances, 2015, 5(109): 90202 − 90208. doi: 10.1039/C5RA18583A
[76] Shi L, Layani M, Cai X, et al. An inkjet printed Ag electrode fabricated on plastic substrate with a chemical sintering approach for the electrochemical sensing of hydrogen peroxide[J]. Sensors and Actuators B:Chemical, 2018, 256: 938 − 945. doi: 10.1016/j.snb.2017.10.035
[77] Li D, Sutton D, Burgess A, et al. Conductive copper and nickel lines via reactive inkjet printing[J]. Journal of Materials Chemistry, 2009, 19(22): 3719 − 3724. doi: 10.1039/b820459d
[78] Li W, Zhang H, Gao Y, et al. Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement[J]. Journal of Materials Chemistry C, 2017, 5(5): 1155 − 1164. doi: 10.1039/C6TC04892G
[79] Liao J, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Optics and Lasers in Engineering, 2021, 142: 106605. doi: 10.1016/j.optlaseng.2021.106605
[80] Walia S, Mondal I, Kulkarni G U. Patterned Cu-Mesh-based transparent and wearable touch panel for tactile, proximity, pressure, and temperature sensing[J]. ACS Applied Electronic Materials, 2019, 1(8): 1597 − 1604. doi: 10.1021/acsaelm.9b00330
[81] Zhou X, Guo W, Yao Y, et al. Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure[J]. Advanced Engineering Materials, 2021, 23(6): 2100192. doi: 10.1002/adem.202100192
[82] Yao Y, Guo W, Zhou X, et al. Thermal properties of laser-fabricated copper-carbon composite films on polyimide substrate[J]. Advanced Engineering Materials, 2021: 2100623.
[83] Peng Z, Lin J, Ye R, et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(5): 3414 − 3419.
[84] Liu H, Liu Y, Guo W, et al. Laser assisted ink-printing of copper oxide nanoplates for memory device[J]. Materials Letters, 2020, 261: 127097. doi: 10.1016/j.matlet.2019.127097