高级检索

基于WebGL的焊接机器人仿真及多层多道路径规划

王飞, 盛仲曦, 陈弈, 陈华斌

王飞, 盛仲曦, 陈弈, 陈华斌. 基于WebGL的焊接机器人仿真及多层多道路径规划[J]. 焊接学报, 2023, 44(1): 27-32. DOI: 10.12073/j.hjxb.20220123001
引用本文: 王飞, 盛仲曦, 陈弈, 陈华斌. 基于WebGL的焊接机器人仿真及多层多道路径规划[J]. 焊接学报, 2023, 44(1): 27-32. DOI: 10.12073/j.hjxb.20220123001
WANG Fei, SHENG Zhongxi, CHEN Yi, CHEN Huabin. Welding robot simulation and multi-layer and multi-channel path planning based on WebGL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 27-32. DOI: 10.12073/j.hjxb.20220123001
Citation: WANG Fei, SHENG Zhongxi, CHEN Yi, CHEN Huabin. Welding robot simulation and multi-layer and multi-channel path planning based on WebGL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 27-32. DOI: 10.12073/j.hjxb.20220123001

基于WebGL的焊接机器人仿真及多层多道路径规划

基金项目: 国家自然科学基金资助项目(52175351)
详细信息
    作者简介:

    王飞,硕士;主要从事机器人智能化焊接方面的科研工作;Email: wangfeizzz@sjtu.edu.cn

    通讯作者:

    陈华斌,教授;Email: hbchen@sjtu.edu.cn.

  • 中图分类号: TG 409

Welding robot simulation and multi-layer and multi-channel path planning based on WebGL

  • 摘要: 针对中厚板机器人焊接运动仿真、多层多道路径规划等需求,开发了一种基于WebGL的开放的机器人焊接离线编程系统.首先搭建了基于激光视觉传感的机器人MAG焊接系统,接着利用JavaScript,WebGL等技术搭建了仿真平台,通过传感器获取焊道的三维点云数据,利用点云处理技术对焊道特征信息进行提取,在此基础上,进一步提出了对20 mm厚的开V形坡口钢板的多层多道路径规划策略,最终完成了V形坡口4层10道的焊接实验.结果表明,该系统对机器人焊接自动化、智能化关键技术提供了可靠的实现途径.
    Abstract: According to the requirements of robot welding motion simulation and multi-layer and multi-channel path planning, an open robot welding off-line programming system based on WebGL is developed. Firstly, a robot MAG welding system based on laser vision sensing is built, and then a simulation platform is built by using JavaScript, WebGL and other technologies. The three-dimensional point cloud data of weld bead is obtained through the sensor, and the point cloud processing technology is used to extract the weld bead feature information. On this basis, a multi-layer and multi pass path planning strategy for 20 mm thick V-groove steel plate is further proposed, Finally, the welding experiment of 4 layers and 10 passes of V-groove was completed. The results show that the system provides a reliable way to realize the key technologies of robot welding automation and intelligence.
  • 图  1   机器人焊接系统

    Figure  1.   Robot welding system

    图  2   参数化建模页面图

    Figure  2.   Parametric modeling page

    图  3   离线排道页面图

    Figure  3.   Offline Lane layout page

    图  4   点云处理流程图

    Figure  4.   Point cloud processing flow chart

    图  5   打底焊道点云处理结果图

    Figure  5.   Result diagram of spot cloud processing of backing weld bead

    图  6   焊接路径规划流程图

    Figure  6.   Flow chart of welding path planning

    图  7   焊道规划示意图

    Figure  7.   Weld bead planning diagram. (a) backing weld bead; (b) initial weld bead; (c) middle weld bead; (d) final weld bead

    图  8   焊接完成示意图

    Figure  8.   Schematic diagram of welding completion

  • [1]

    Holubek R, Sobrino D D, Košťál P, et al. Offline programming of an ABB robot using imported CAD models in the robotStudio software environment[J]. Applied Mechanics and Materials, 2014, 3592(693): 62 − 67.

    [2]

    Bedaka A K, Vidal J, Lin C Y. Automatic robot path integration using three-dimensional vision and offline programming[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 1935 − 1950. doi: 10.1007/s00170-018-03282-w

    [3] 魏振红, 俞港, 付庄, 等. 基于RobCAD软件的焊接机器人离线编程[J]. 机电一体化, 2015, 21(3): 31 − 34. doi: 10.16413/j.cnkiissn.1007-080x.2015.03.006

    Wei Zhenhong, Yu Gang, Fu Zhuang, et al. Off-line programming of welding robot based on RobCAD[J]. Mechatronics, 2015, 21(3): 31 − 34. doi: 10.16413/j.cnkiissn.1007-080x.2015.03.006

    [4]

    Gucwa K J, Cheng H H. RoboSim: a simulation environment for programming virtual robots[J]. Engineering with Computers, 2018, 34(3): 475 − 485. doi: 10.1007/s00366-017-0553-7

    [5] 王智兴, 樊文欣, 张保成, 等. 基于Matlab的工业机器人运动学分析与仿真[J]. 机电工程, 2012, 29(1): 33 − 37. doi: 10.3969/j.issn.1001-4551.2012.01.008

    Wang Zhixing, Fan Wenxin, Zhang Baocheng, et al. Kinematical analysis and simulation of industrial robot based on Matlab[J]. Journal of Mechanical & Electrical Engineering, 2012, 29(1): 33 − 37. doi: 10.3969/j.issn.1001-4551.2012.01.008

    [6]

    Huang Y L, Zhou M Q, Deng Q Q. A Web Tools for Molecule Visualization System Based on HTML5 and WebGL[J]. Applied Mechanics and Materials, 2014, 3207(556-562): 5227 − 5230.

    [7]

    Li L, Zhang K, Xu Y. A Cloud-based Framework for Robot Simulation Using WebGL[C]//Sixth International Conference on Intelligent Systems Design and Engineering Applications. IEEE Computer Society, 2015: 5-8.

    [8] 翟敬梅, 郭培森, 徐晓. 基于WebGL的双机器人运动仿真实验平台[J]. 实验室研究与探索, 2017, 36(8): 112 − 116. doi: 10.3969/j.issn.1006-7167.2017.08.027

    Yao Jingmei, Guo Peishen, Xu Xiao. Motion simulation experimental platform of dual robots based on WebGL[J]. Research and Exploration in Laboratory, 2017, 36(8): 112 − 116. doi: 10.3969/j.issn.1006-7167.2017.08.027

    [9] 龚烨飞, 李新德, 戴先中, 等. 集成虚拟结构光传感器的焊接机器人离线编程技术[J]. 焊接学报, 2011, 32(4): 17 − 20.

    Gong Yefei, Li Xinde, Dai Xianzhong, et al. A weld robot off-line programming system integrated with virtual structured-light sensor[J]. Transactions of the China Welding Institution, 2011, 32(4): 17 − 20.

    [10] 郭吉昌, 朱志明, 于英飞, 等. 焊接领域激光结构光视觉传感技术的研究及应用[J]. 中国激光, 2017, 44(12): 7 − 16.

    Guo Jichang, Zhu Zhiming, Yu Yingfei, et al. Research and application of visual sensing technology based on laser structured light in welding industry[J]. Chinese Journal of Lasers, 2017, 44(12): 7 − 16.

    [11]

    Yang C, Ye Z, Chen Y, et al. Multi-pass path planning for thick plate by DSAW based on vision sensor[J]. Sensor Review, 2014, 34(4): 416 − 423. doi: 10.1108/SR-04-2013-649

    [12] 曹守启, 刘洪飞, 冯杰才, 等. 基于焊接路径节点提取的对接焊缝路径规划方法[J]. 计量与测试技术, 2019, 46(11): 49 − 51. doi: 10.15988/j.cnki.1004-6941.2019.11.015

    Cao Shouqi, Liu Hongfei, Feng Jiecai, et al. Butt Weld Path Planning Method Based on Welding Path Node Extraction[J]. Metrology & Measurement Technique, 2019, 46(11): 49 − 51. doi: 10.15988/j.cnki.1004-6941.2019.11.015

    [13]

    Njaastad E B, Egeland O. Automatic Touch-Up of Welding Paths Using 3D Vision[J]. IFAC Papersonline, 2016, 49(31): 73 − 78. doi: 10.1016/j.ifacol.2016.12.164

    [14]

    Yan M Z, Zhang K, Liu D, et al. Autonomous programming and adaptive filling of lap joint based on three-dimensional welding-seam model by laser scanning[J]. Journal of Manufacturing Processes, 2020, 53(C): 396 − 405.

    [15]

    Geng Y S, Zhang Y K, Tian X C, et al. A method of welding path planning of steel mesh based on point cloud for welding robot[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(9-10): 2943 − 2957.

    [16]

    Zhang J X, Lin X G, Liang X L. Advances and Prospects of Information Extraction from Point Clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1460 − 1469.

    [17]

    Zhou L B, Xu F L, Liu S H. The Research of Point Cloud Data Processing Technology[J]. Applied Mechanics and Materials, 2014, 628: 426 − 431. doi: 10.4028/www.scientific.net/AMM.628.426

  • 期刊类型引用(10)

    1. 马静,罗鸿,王申豪,童安琪,李建辉,王建刚,冯志浩,陈义庆. 外加电位下X80双相管线钢在模拟沿海土壤环境中的应力腐蚀行为. 金属热处理. 2023(02): 30-35 . 百度学术
    2. 吴明,谢飞,陈旭,王丹,孙东旭. 埋地油气管道腐蚀失效研究进展及思考. 油气储运. 2022(06): 712-722 . 百度学术
    3. 兰亮云,孔祥伟,邱春林,杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展. 金属学报. 2021(07): 845-859 . 百度学术
    4. 方帅,闫凤霞,张骁勇. 剥离涂层下X90管线钢在近中性pH值模拟溶液中的电化学腐蚀行为. 焊管. 2019(03): 12-15+22 . 百度学术
    5. 闫凤霞,李自力,方帅. 管线钢在近中性pH值环境中应力腐蚀开裂研究进展. 热加工工艺. 2019(06): 45-50 . 百度学术
    6. 赵健,谢飞,宫克,王丹,王兴发,张鸣伦,王月. X70管线钢在硫酸盐还原菌作用下的应力腐蚀开裂行为. 表面技术. 2017(10): 108-114 . 百度学术
    7. 颜凌云,胡楠楠,郏义征. X80管线钢在近中性pH溶液中腐蚀行为研究. 表面技术. 2016(03): 52-57 . 百度学术
    8. 杨旭,吴明,谢飞,王丹,潘哲,周伟光. 辽河油田土壤中温度对高强度管线钢腐蚀行为的影响. 材料保护. 2016(09): 74-77+9 . 百度学术
    9. 王丹,谢飞,吴明,李雪,程龙生. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响. 材料热处理学报. 2016(05): 198-203 . 百度学术
    10. 张体明,王勇,赵卫民,吴倩. 模拟煤制气环境下X80管线钢及HAZ的氢脆敏感性. 焊接学报. 2015(09): 43-46+115 . 本站查看

    其他类型引用(8)

图(8)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  58
  • PDF下载量:  92
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-01-22
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回