Comparative study between powder feeding and wire feeding laser additive repairing of V-groove with Inconel 718 alloy
-
摘要: 激光熔覆技术已广泛应用于关键部件的增材修复,其熔覆材料的输送主要采用送粉式或送丝式. 为研究送粉式与送丝式激光修复对Inconel 718高温合金修复质量的影响,结合数值模拟与试验研究对比分析了送粉与送丝方式对激光修复过程中V形槽温度场、熔池轮廓、修复区宏观形貌与微观组织的影响. 结果表明,送粉与送丝激光修复V形槽熔池的激光能量吸收与传递关系不同;相比于送丝式,送粉式激光修复过程中的V形槽底部能量集中,导致修复区熔深增大45.5%;送粉式修复过程中粉末以固态及半固态形式冲击进入熔池,修复区表面粗糙度显著增加,同时送粉式修复区晶粒尺寸随修复深度减小逐渐增大,修复区中部区域晶粒取向差异明显.Abstract: Laser cladding technology has been widely used in additive repairing of key components, and powder feeding and wire feeding are the main methods used during this process. In this study, laser additive repairing of V-groove with Inconel 718 powder and wire were conducted to study how they would affect the repairing quality of the superalloy . Numerical simulation and experiments were carried out to compare the effects of powder and wire feeding methods on the V-groove temperature field, molten pool profile, macroscopic morphology and microstructure of the repaired zone during laser repairing. The results indicate that powder and wire feeding methods affect the absorption of laser energy by V-grooves and molten pools. During the powder feeding repairing, the temperature is higher at the bottom of the V-groove, resulting in a 45.5% increase in the melt depth of the repair zone. Powders in state of solid and semisolid were sprayed onto the molten pool , resulting in a coarser surface in the repairing zone. In addition, the grain size in the repaired zone grows gradually as the depth decreases , and the difference in grain orientation in the center of the repaired zone is also significant.
-
-
表 1 Inconel 718镍基高温合金的化学成分(质量分数,%)
Table 1 Chemical compositions of nickel-based superalloy Inconel 718
Ni Cr Nb Mo Co Al Ti Si Mn C Cu Fe 50 ~ 55 17 ~ 21 4.75 ~ 5.5 2.8 ~ 3.3 ≤1 0.2 ~ 0.8 0.7 ~ 0.15 ≤0.35 ≤0.35 ≤0.08 ≤0.3 余量 -
[1] 郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46(5): 513 − 527. doi: 10.3724/SP.J.1037.2009.00860 Guo Jianting. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metallurgica Sinica, 2010, 46(5): 513 − 527. doi: 10.3724/SP.J.1037.2009.00860
[2] 师昌绪, 徐滨士, 张平, 等. 21世纪表面工程的发展趋势[J]. 中国表面工程, 2001(1): 2 − 7. doi: 10.3321/j.issn:1007-9289.2001.01.002 Shi Changxu, Xu Binshi, Zhang Ping, et al. Development of surface engineering in the 21st century[J]. China Surface Engineering, 2001(1): 2 − 7. doi: 10.3321/j.issn:1007-9289.2001.01.002
[3] 应雨龙, 李靖超, 庞景隆, 等. 基于热力模型的燃气轮机气路故障预测诊断研究综述[J]. 中国电机工程学报, 2019, 39(3): 731 − 743,952. Ying Yulong, Li Jingchao, Pang Jinglong, et al. Review of gas turbine gas-path fault diagnosis and prognosis based on thermodynamic model[J]. Proceedings of the CSEE, 2019, 39(3): 731 − 743,952.
[4] 郭伟, 董丽虹, 王慧鹏, 等. 基于红外热像技术的涡轮叶片损伤评价研究进展[J]. 航空学报, 2016, 37(2): 429 − 436. Guo Wei, Dong Lihong, Wang Huipeng, et al. Research progress of damage estimation for turbine blades based on infrared hermographic technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 429 − 436.
[5] 姚喆赫, 姚建华, 向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学, 2020, 22(3): 63 − 70. doi: 10.15302/J-SSCAE-2020.03.011 Yao Zhehe, Yao Jianhua, Xiang Qiao. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE, 2020, 22(3): 63 − 70. doi: 10.15302/J-SSCAE-2020.03.011
[6] 徐滨士. 中国再制造工程及其进展[J]. 中国表面工程, 2010, 23(2): 1 − 6. doi: 10.3969/j.issn.1007-9289.2010.02.001 Xu Binshi. Remanufacture engineering and its development in china[J]. China Surface Engineering, 2010, 23(2): 1 − 6. doi: 10.3969/j.issn.1007-9289.2010.02.001
[7] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29 − 39. Song Jianli, Li Yongtang, Deng Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29 − 39.
[8] Ya Wei, Pathiraj B, Yu Xinghua. From statistical analysis to process optimization during cladding using a Nd: YAG laser[J]. China Welding, 2022, 31(4): 7 − 22.
[9] 张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1 − 11. Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1 − 11.
[10] Liu Y A, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review[J]. Journal of Manufacturing Processes, 2021, 66: 341 − 363. doi: 10.1016/j.jmapro.2021.03.061
[11] 封慧, 李剑峰, 孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J]. 中国激光, 2014, 41(8): 86 − 91. Feng Hui, Li Jianfeng, Sun Jie. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 2014, 41(8): 86 − 91.
[12] Sun Y W, Hao M Z. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018
[13] Lee H K. Effects of the cladding parameters on the deposition efficiency in pulsed Nd: YAG laser cladding[J]. Journal of Materials Processing Technology, 2008, 202(1-3): 321 − 327. doi: 10.1016/j.jmatprotec.2007.09.024
[14] Onuike B, Bandyopadhyay A. Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718[J]. Materials Letters, 2019, 252: 256 − 259. doi: 10.1016/j.matlet.2019.05.114
[15] 卢朋辉, 刘建睿, 薛蕾, 等. 激光成形修复K418高温合金的显微组织与开裂行为[J]. 稀有金属材料与工程, 2012, 41(2): 315 − 319. Lu Penghui, Liu Jianrui, Xue Lei, et al. Microstructure and cracking behavior of K418 superalloy by laser forming repairing[J]. Rare Metal Materials and Engineering, 2012, 41(2): 315 − 319.
[16] 卞宏友, 朱明昊, 李英, 等. 激光沉积修复GH536/GH738合金的组织及力学性能[J]. 中国有色金属学报, 2020, 30(3): 542 − 549. Bian Hongyou, Zhu Minghao, Li Ying, et al. Microstructure and mechanical properties of laser deposition repair of GH536/GH738 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 542 − 549.
[17] Brandl E, Michailov V, Viehweger B, et al. Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads[J]. Surface & Coatings Technology, 2011, 206(6): 1120 − 1129.
[18] 尹研, 王匀, 许桢英, 等. 基于激光填丝熔覆的Cr12MoV模具修复及性能表征[J]. 表面技术, 2019, 48(11): 312 − 319. Yin Yan, Wang Yun, Xu Zhenying, et al. Repair and characterization of Cr12MoV dies based on laser cladding by wire[J]. Surface Technology, 2019, 48(11): 312 − 319.
[19] Zhang Y N, Cao X, Wanjara P. Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2569 − 2581. doi: 10.1007/s00170-013-5171-y
[20] 李凯斌, 李东, 刘东宇, 等. 光纤激光送丝熔覆修复工艺研究[J]. 中国激光, 2014, 41(11): 82 − 87. Li Kaibin, Li Dong, Liu Dongyu, et al. Research of fiber laser cladding repairing process with wire feeding[J]. Chinese Journal of Lasers, 2014, 41(11): 82 − 87.
[21] Abioye T E, Folkes J, Clare A T. A parametric study of Inconel 625 wire laser deposition[J]. Journal of Materials Processing Technology, 2013, 213(12): 2145 − 2151. doi: 10.1016/j.jmatprotec.2013.06.007
[22] Demir A G. Micro laser metal wire deposition for additive manufacturing of thin-walled structures[J]. Optics and Lasers in Engineering, 2018, 100: 9 − 17. doi: 10.1016/j.optlaseng.2017.07.003
[23] Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178 − 188. doi: 10.1016/j.addma.2016.05.003
[24] Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116: 113.
[25] Li C, Yu Z B, Gao J X, et al. Numerical simulation and experimental study on the evolution of multi-field coupling in laser cladding process by disk lasers[J]. Welding in the World, 2019, 63(4): 925 − 945. doi: 10.1007/s40194-019-00725-0
[26] Anderson M, Patwa R, Shin Y C. Laser-assisted machining of Inconel 718 with an economic analysis[J]. International Journal of Machine Tools & Manufacture, 2006, 46(14): 1879 − 1891.
[27] Khorasani M, Ghasemi A, Leary M, et al. Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121477. doi: 10.1016/j.ijheatmasstransfer.2021.121477
[28] Jin K N, Yang Z Y, Chen P, et al. Dynamic solidification process during laser cladding of IN718: Multi-physics model, solute suppressed nucleation and microstructure evolution[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122907. doi: 10.1016/j.ijheatmasstransfer.2022.122907
[29] 黄辰阳, 陈嘉伟, 朱言言, 等. 激光定向能量沉积的粉末尺度多物理场数值模拟[J]. 力学学报, 2021, 53(12): 3240 − 3251. doi: 10.6052/0459-1879-21-420 Huang Chenyang, Chen Jiawei, Zhu Yanyan, et al. Powder scale multiphysics numerical modelling of laser directed energy deposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3240 − 3251. doi: 10.6052/0459-1879-21-420
[30] Lv H, Li X D, Li Z J, et al. Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy[J]. Journal of Manufacturing Processes, 2021, 67: 63 − 76. doi: 10.1016/j.jmapro.2021.04.016
[31] 刘振侠, 黄卫东, 万柏涛. 送粉式激光熔覆数值模型基本问题研究[J]. 中国激光, 2003, 30(6): 567 − 570. doi: 10.3321/j.issn:0258-7025.2003.06.023 Liu Zhenxia, Huang Weidong, Wan Baitao. Investigation of basic problems of the numerical model for powder feed laser cladding[J]. Chinese Journal of Lasers, 2003, 30(6): 567 − 570. doi: 10.3321/j.issn:0258-7025.2003.06.023
[32] 彭进, 李俐群, 林尚扬, 等. 激光液态填充焊的填材熔化与过渡稳定性[J]. 焊接学报, 2016, 37(7): 9 − 12. Peng Jin, Li Liqun, Lin Shangyang, et al. Melting of filler metal and transfer stability in laser welding with pre-melting liquid filler[J]. Transactions of the China Welding Institution, 2016, 37(7): 9 − 12.
[33] 郭艳华, 戴国庆, 孙中刚, 等. 激光增材制造钛合金冶金组织特征及其调控方法研究进展[J]. 稀有金属材料与工程, 2022, 51(12): 4733 − 4744. Guo Yanhua, Dai Guoqing, Sun Zhonggang, et al. Research progress of metallurgical structure characteristics and control methods of laser additive manufacturing titanium alloys[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4733 − 4744.
[34] Prasad A, Yuan L, Lee P, et al. Towards understanding grain nucleation under additive manufacturing solidification conditions[J]. Acta Materialia, 2020, 195: 392 − 403. doi: 10.1016/j.actamat.2020.05.012
[35] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Additive Manufacturing, 2019, 30: 100877. doi: 10.1016/j.addma.2019.100877
[36] Wang J, Lin X, Wang J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 768: 97 − 113. doi: 10.1016/j.jallcom.2018.07.235
[37] 魏雷, 林鑫, 王猛, 等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64(1): 356 − 363. Wei Lei, Lin Xin, Wang Meng, et al. Cellular automaton simulation of the molten pool of laser solid forming process[J]. Acta Physica Sinica, 2015, 64(1): 356 − 363.
[38] 张霜银, 林鑫, 陈静, 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J]. 稀有金属材料与工程, 2007, 255(10): 1839 − 1843. doi: 10.3321/j.issn:1002-185x.2007.10.033 Zhang Shuangyin, Lin Xin, Chen Jing, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering, 2007, 255(10): 1839 − 1843. doi: 10.3321/j.issn:1002-185x.2007.10.033
-
期刊类型引用(1)
1. 王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 . 百度学术
其他类型引用(3)