高级检索

超声冲击处理冷轧钢板缝焊接头的疲劳性能

岑耀东, 陈芙蓉

岑耀东, 陈芙蓉. 超声冲击处理冷轧钢板缝焊接头的疲劳性能[J]. 焊接学报, 2017, 38(6): 115-119.
引用本文: 岑耀东, 陈芙蓉. 超声冲击处理冷轧钢板缝焊接头的疲劳性能[J]. 焊接学报, 2017, 38(6): 115-119.
CEN Yaodong, CHEN Furong. Fatigue performance improvement of SPCC steel resistance seam welding by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 115-119.
Citation: CEN Yaodong, CHEN Furong. Fatigue performance improvement of SPCC steel resistance seam welding by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 115-119.

超声冲击处理冷轧钢板缝焊接头的疲劳性能

基金项目: 内蒙古自治区"草原英才"支持项目

Fatigue performance improvement of SPCC steel resistance seam welding by ultrasonic impact treatment

  • 摘要: 用窄搭接电阻缝焊机对汽车用SPCC(冷轧低碳普通钢板)进行焊接,采用超声冲击仪对缝焊接头进行处理;通过拉压疲劳试验、X射线应力分析仪、OM、SEM对处理和未处理的缝焊接头疲劳性能和组织进行测试和观察分析对比.结果表明,未经超声冲击处理的缝焊接头经5×104次交变载荷作用即在焊趾区萌生裂纹,裂纹与载荷方向呈45°;经超声冲击处理过的缝焊接头经1.88×106次交变载荷作用未发生断裂;超声冲击处理使缝焊接头表层晶粒细化并形成塑性变形层,降低了其表面的微裂纹缺陷造成的应力集中,使表面残余拉应力变为了压应力,有利于改善缝焊接头的疲劳性能.
    Abstract: SPCC(steel plate cold common)of cars was welded by Narrow lap resistance seam welder. By using ultrasonic impact treatment technology, the joint of resistance seam welding was treated with the ultrasonic impact. The organization and mechanical properties of treated and untreated seam welded joint were tested and analyzed through tension and compression fatigue test, X-ray diffraction stress measuring instrument, metallographic test and scanning electron microscopy. The results showed that the joint of resistance seam welding, without ultrasonic impact treatment, had big changes in the frequency and cracks under cyclic loading of 5×104 times. The cracks occurred in the weld toe area, and the load direction was a 45-degree angle. The joint of resistance seam welding, with ultrasonic impact treatment, had no changes in the frequency and cracks under cyclic loading of 1.88×106 times. The joint of resistance seam welding of ultrasonic impact treatment was refined in the surface grain and formed the plastic deformation layer, reducing the stress concentration caused by weld defects, such as micro crack of the seam welded joint and the surface of weld toe area. And it is which could improve significantly the fatigue performance of steel plate welded joint.
  • [1] 朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20): 35-44. Zhu Youli, Wang Yanli, Bian Feilong, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering, 2014, 50(20): 35-44.
    [2] Yildirim H C, Marquis G B. Overview of fatigue data for high frequency mechanical impact treated welded joints[J]. Weld World, 2012, 56(17): 82-96.
    [3] 于影霞, 邓海鹏, 何柏林, 等. 超声冲击对MB8镁合金对接接头疲劳性能的影响[J]. 焊接学报, 2016, 37(8): 124-127. Yu Yingxia, Deng Haipeng, He Bolin, et al. Effect of ultrasonic impact treating on the fatigue properties of MB8 magnesium alloy butt joint[J]. Transactions of the China Welding Institution. 2016, 37(8): 124-127.
    [4] 朱有利, 李 礼, 王 侃, 等. 一种超声深滚与滚光一体化抗疲劳制造技术[J]. 机械工程学报, 2009, 45(9): 183-186. Zhu Youli, Li Li, Wang Kan, et al. An integrated rough and burnishing technology for anti-fatigue manufacturing[J]. Journal of Mechanical Engineering, 2009, 45(9): 183-186.
    [5] 徐康友. 滚压加工[M]. 北京: 机械工业出版社, 1990.
    [6] Li Zhanming, Zhu Youli, Du Xiaokun, et al. Microstructures and mechanical properties of 2024 aluminum alloy welded joint after ultrasonic peening treatment[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 307-311.
    [7] PrevÉY P S, Cammett J. Low cost corrosion damage mitigation and improved fatigue performance of low plasticity burnished 7075-T6[J]. Journat of Materials Engineering and Perform, 2001, 10(5): 548-555.
    [8] Roy S, Fisher J W. Enhancing fatigue strength by ultrasonic impact treatment[J]. International Journal of Steel Structures, 2005, 5(3): 241-252.
    [9] Tian Z L, Zou G, He C H, et al. Fatigue strength improvement of welded joint by ultrasonic peening in ultra-fine grain steel[J]. Journal of Iron And Steel Research International, 2003, 10(3): 64-66.
    [10] 贾翠玲, 陈芙蓉. 超声冲击工艺参数对装甲铝合金焊接残余应力影响的有限元分析[J]. 焊接学报, 2016, 37(2): 9-12. Jia Cuiling, Chen Furong. Numerically simulating the effect of ultrasonic impact parameters on welding stress in 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(2): 9-12.
    [11] Yang X J, Ling X, Zhou J X. Optimization of the fatigue resistance of AISI304 stainless steel by ultrasonic impact treatment[J]. International Journal of Fatigue, 2014, 61(4): 28-38.
    [12] Yang X J, Ling X, Zhou J X. Optimization of the fatigue resistance of AISI304 stainless steel by ultrasonic impact treatment [J]. International Journal of Fatigue, 2014, 61(4): 28-38.
    [13] 解瑞军, 邱小明, 陈芙蓉, 等. 超声冲击实现7A52铝合金焊接接头表面纳米化[J]. 焊接学报, 2014, 35(12): 35-38. Xie Ruijun, Qiu Xiaoming, Chen Furong, et al. Surface nano crystallization of 7A52 aluminum alloy welded joint using ultrasonic impact treatment[J]. Transactions of the China Welding Institution, 2014, 35(12): 35-38.
    [14] Liu Suo. Fatigue properties of metal materials and shot peening strengthening technique[M]. Beijing: National Defense Industry Press, 1977.
计量
  • 文章访问数:  771
  • HTML全文浏览量:  6
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-01

目录

    /

    返回文章
    返回