高级检索

激光焊接状态图像灰度共生矩阵分析法

高向东, 李竹曼, 游德勇, 李秀忠

高向东, 李竹曼, 游德勇, 李秀忠. 激光焊接状态图像灰度共生矩阵分析法[J]. 焊接学报, 2017, 38(6): 11-14.
引用本文: 高向东, 李竹曼, 游德勇, 李秀忠. 激光焊接状态图像灰度共生矩阵分析法[J]. 焊接学报, 2017, 38(6): 11-14.
GAO Xiangdong, LI Zhuman, YOU Deyong, LI Xiuzhong. Analysis of laser welding status based on gray level co-occurrence matrix[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 11-14.
Citation: GAO Xiangdong, LI Zhuman, YOU Deyong, LI Xiuzhong. Analysis of laser welding status based on gray level co-occurrence matrix[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 11-14.

激光焊接状态图像灰度共生矩阵分析法

基金项目: 国家自然科学基金资助项目(51675104);广东省科技发展专项资金资助项目(2016A010102015);广州市科技计划资助项目(201510010089);佛山市科技创新专项资金项目(2014AG10015)

Analysis of laser welding status based on gray level co-occurrence matrix

  • 摘要: 在激光焊接过程中,金属蒸气和飞溅蕴含着丰富的焊接状态信息.以大功率盘形激光焊接304不锈钢为试验对象,应用紫外波段和可见光波段高速摄像机摄取焊接过程中金属蒸气和飞溅瞬态图像.分析图像区域纹理二阶统计特征——灰度共生矩阵,并用ASM(angular second moment)能量、惯性矩、熵和自相关性描述灰度共生矩阵,分析灰度共生矩阵与焊缝成形之间的关系,同时提取飞溅数量和面积、金属蒸气质心方位和金属蒸气高度等特征,建立BP(back propagation)神经网络模型,预测焊缝成形.结果表明,所分析方法能够有效反映金属蒸气、飞溅与焊接状态之间的关联,为在线监测大功率盘形激光焊接质量提供依据.
    Abstract: In the process of laser welding, the plume and spatter images contain plenty of information, which can directly reflect the welding status. During bead-on-plate disk laser welding of type 304 austenitic stainless steel plates, a high-speed camera in ultraviolet band and visible light band was applied to capture the plume and spatter images. Angular second moment, inertia moment, entropy and correlation of an image were calculated to describe the GLCM(gray level co-occurrence matrix) which is the second statistical characteristic values of regional texture, and analyze the inherent law between GLCM and the weld formation. The numbers and areas of spatter, orientation of centroid of plume,height of plume were calculated as the characteristic parameters. Weld formation was predicted by establishing a BP (back propagation) neural network model. Experimental results show that the proposed method can reflect the relationship between plume and spatter and welding status, and provide a basis for monitoring and control of high-power disk laser welding process in real time.
  • [1] 崔 丽, 李晓延, 贺定勇, 等. 5A90铝锂合金激光焊焊缝微观组织特征[J]. 焊接学报, 2010, 31(9): 77-80. Cui Li, Li Xiaoyan, He Dingyong, et al. Microstructure investigation of Nd:YAG laser welded 5A90 aluminum-lithium alloys[J]. Transactions of the China Welding Institution, 2010, 31(9): 77-80.
    [2] Heider A, Sollinger J, Abt F, et al. High-speed x-ray analysis of spatter formation in laser welding of copper[J]. Physics Procedia, 2013(41): 112-118.
    [3] 高向东, 汪润林, 龙观富, 等. 盘型激光焊金属蒸气特征色调-色饱和度-亮度分析法研究[J]. 物理学报, 2012, 61(14): 148103-148103. Gao Xiangdong, Wang Runlin, Long Guanfu, et al. Study of characteristics of plume based on hue-saturation-intensity during high-power disk laser welding[J]. Acta Physica Sinica, 2012, 61(14): 148103-148103.
    [4] Gao X D, Liu G Q. Elucidation of metallic plume and spatter characteristics based on SVM during high-power disk laser welding[J]. Plasma Science and Technology, 2015, 17(1): 32-36.
    [5] Honeycutt C E, Plotnick R. Image analysis techniques and gray-level co-occurrence matrices(GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J]. Computers & Geosciences, 2008, 34(11): 1461-1472.
    [6] 王 清, 那 月, 孙东立, 等. GH99合金TIG焊接接头拉伸性能的人工神经网络预测[J]. 焊接学报, 2010, 31(3): 77-80. Wang Qing, Na Yue, Sun Dongli, et al. Prediction of tensile property of TIG welding joints in GH99 alloy by artificial neural network[J]. Transactions of the China Welding Institution, 2010, 31(3): 77-80.
计量
  • 文章访问数:  906
  • HTML全文浏览量:  7
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05

目录

    /

    返回文章
    返回