高级检索

圆圈形运丝方式下温度影响MIG焊接头组织与断裂位置的规律

方喜风, 王新, 史学海, 姬书得, 梁志敏, 肖翰林

方喜风, 王新, 史学海, 姬书得, 梁志敏, 肖翰林. 圆圈形运丝方式下温度影响MIG焊接头组织与断裂位置的规律[J]. 焊接学报, 2016, 37(12): 37-40.
引用本文: 方喜风, 王新, 史学海, 姬书得, 梁志敏, 肖翰林. 圆圈形运丝方式下温度影响MIG焊接头组织与断裂位置的规律[J]. 焊接学报, 2016, 37(12): 37-40.
FANG Xifeng, WANG Xin, SHI Xuehai, JI Shude, LIANG Zhimin, XIAO Hanlin. Effects of temperature on microstructure and fracture position of MIG welded joints using circled wire-feeding mode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 37-40.
Citation: FANG Xifeng, WANG Xin, SHI Xuehai, JI Shude, LIANG Zhimin, XIAO Hanlin. Effects of temperature on microstructure and fracture position of MIG welded joints using circled wire-feeding mode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 37-40.

圆圈形运丝方式下温度影响MIG焊接头组织与断裂位置的规律

基金项目: 国家自然科学基金资助项目(51204111);航空科学基金资助项目(2013ZE54021,2014ZE54021)

Effects of temperature on microstructure and fracture position of MIG welded joints using circled wire-feeding mode

  • 摘要: 以圆圈形运丝为研究对象,利用数值模拟与试验相结合的方法研究了在MIG焊接过程中的温度场分布规律,讨论了温度峰值影响接头显微组织及断裂位置的规律.结果表明,对于圆圈形摆动工艺来说,由于熔池区内左侧的材料经历了周期性的二次加热,导致焊缝左侧及热影响区材料经历的温度峰值均高于右侧;摆动工艺的熔池区温度峰值高于不摆动工艺.与直线运丝相比较,摆动焊焊道内的等轴晶较大,而相邻焊道界面处的柱状晶较小.不同工艺下拉伸试样的断裂位置与焊缝区经历的热循环密切相关.
    Abstract: Based on the circled wire-feeding mode, the temperature distribution during the MIG welding process was studied by numerical simulation and experimental investigation and the effect of the peak temperature on the microstructure and fracture position was discussed. Results showed that for the circled weaving welding process, the materials in the left side of the weld and thermo-affected zone experience higher peak temperature because the material in the left side of the molten pool underwent periodic reheating process. The temperature of the molten pool using the weaving welding process is higher than that of the linear welding process. Compared with linear wire-feeding mode, the equiaxed grains in the weld bead using the weaving welding process are larger, while the columnar grains at the interface of the adjacent weld bead are smaller. The fracture position of the tensile samples under these two processes is closely related to the heat cycle in the weld zone.
  • [1] 汪琼. 厚壁铝合金摆动电弧窄间隙MIG焊工艺技术研究[D]. 哈尔滨:哈尔滨工业大学. 2013.
    [2] Zhang L G, Ji S D, Yang J G, et al. Cluster banding heat source model[J]. China Welding. 2006, 15(3):55-58.
    [3] 胡军峰, 方洪渊, 杨建国, 等. 电弧摆动对焊接应力场的影响[J]. 焊接学报, 2007, 28(1):65-68. Hu Junfeng, Fang Hongyuan, Yang Jianguo, et al. Influence of arc weaving on weldingresidual stress field[J]. Transactions of the China Welding Institution. 2007, 28(1):65-68.
    [4] 张华军, 张广军, 蔡春波, 等. 摆动焊接动态过程温度场数值模拟[J]. 焊接学报, 2008, 29(2):69-76. Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. Transactions of the China Welding Institution. 2008, 29(2):69-76.
    [5] Kim B H, Kang N H, Oh W T, et al. Effects of weaving laser on weld microstructure and crack for Al 6k21-T4 alloy[J]. Journal of Marine Science and Technology. 2011, 27(1):93-96.
    [6] Vargas J A, Torres J E, Pacheco J A, et al. Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints[J]. Materials and Design. 2013, 52(24):556-564.
    [7] RuanY, Qiu X M, Gong W B, et al. Mechanical properties and microstructures of 6082-T6 joint welded by twin wire metal inert gas arc welding with the SiO2 flux[J]. Materials and Design. 2012, 35:20-24.
    [8] Gungor B, Kaluc E, Taban E, et al. Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys[J]. Materials and Design. 2014, 54(2):207-211.
    [9] 朱瑞栋, 董文超, 陆善平, 等. 基于SYSWELD的A7N01铝合金缓冲梁结构焊接过程数值模拟. 焊接. 2014(3):42-47. Zhu Ruidong, Dong Wenchao, Lu Shanping, et al. Numerical simulation of welding processes of A7N01 aluminum bumper beam based on SYSWELD software[J]. Welding & Joining. 2014(3):42-47.
    [10] Manurung Y H P, Lidam R N, Rahim M R, et al. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment[J]. International Journal of Pressure Vessels and Piping. 2013, 1111112(6):89-98.
    [11] WangY, Wang L J, Di X J, et al. Simulation and analysis of temperature field for in-service multi-pass welding of a sleeve fillet weld[J]. Computational Materials Science. 2013, 68(2):198-205.
计量
  • 文章访问数:  462
  • HTML全文浏览量:  4
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-29

目录

    /

    返回文章
    返回