高级检索

焊缝磁光图像全变分模型恢复方法

高向东, 题园园

高向东, 题园园. 焊缝磁光图像全变分模型恢复方法[J]. 焊接学报, 2016, 37(12): 1-4.
引用本文: 高向东, 题园园. 焊缝磁光图像全变分模型恢复方法[J]. 焊接学报, 2016, 37(12): 1-4.
GAO Xiangdong, TI Yuanyuan. Total variation restoration of weld magneto-optical images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 1-4.
Citation: GAO Xiangdong, TI Yuanyuan. Total variation restoration of weld magneto-optical images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 1-4.

焊缝磁光图像全变分模型恢复方法

基金项目: 国家自然科学基金资助项目(51675104);广东省科技发展专项资金资助项目(2016A010102015);广州市科技计划资助项目(201510010089);广东省计算机集成制造重点实验室开放基金资助项目(CIMSOF2016008)

Total variation restoration of weld magneto-optical images

  • 摘要: 针对紧密对接微间隙焊缝,研究磁光成像识别的焊缝图像恢复算法,建立基于能量泛函的全变分(Total Variation)图像恢复模型,解决磁光图像退化和清晰度不高的问题.根据偏微分方程论证全变分图像恢复模型解的存在性,将图像恢复过程转化为约束最优化问题,通过泛函变分给出模型的欧拉-拉格朗日方程,对数值近似解的离散形式进行磁光图像恢复.试验分析采用全变分图像恢复模型降噪的同时,保持焊缝图像良好的边缘和纹理特征.结果表明,经全变分模型图像恢复后可有效提高焊缝磁光图像质量,准确地测量焊缝位置.
    Abstract: An image restoration algorithmwas studied to detect tight butt weldbased on magneto-optical imaging technique. A total variation (referred to as ROF) image restoration model was established with energy functional. The problems of weld magneto-optical image degradation and low definition had been solved. The existence of image restoration model solution was demonstrated using the comparison principle of partial differential equations, in which image restoration process was transformed into a constraint optimization problem. Euler-Lagrange equations of restoration model were presented with the functional variation, whose numerical approximate solution of discrete form can be used for image restoration. Tests were carried out to reduce the image noises and restore the images using the total variation restoration model. The edge and texture characteristics of a magneto-optical image could be kept with satisfaction. Experimental results show that the quality of weld magneto-optical image can be promoted by total variation image restoration, and the weld position can be detected accurately.
  • [1] 陈海永, 孙鹤旭, 徐德. 一类窄焊缝的结构光图像特征提取方法[J]. 焊接学报, 2012, 33(1):61-64. Chen Haiyong, Sun Hexu, Xu De. An image feature extraction method for a certain kind of narrow gap weld seam[J]. Transactions of the China Welding Institution, 2012, 33(1):61-64.
    [2] 高向东, 甄任贺. 微间隙焊缝磁光成像检测方法[J]. 焊接学报, 2014, 35(4):11-14. Gao Xiangdong, Zhen Renhe. A method to detect micro weld gap based on magneto-optical imaging[J]. Transactions of the China Welding Institution, 2014, 35(4):11-14.
    [3] Gao Xiangdong, Liu Yonghua, You Deyong. Detection of micro-weld joint by magneto-optical imaging[J]. Optics & Laser Technology, 2014, (62):141-151.
    [4] Yu hua Cheng, Yi ming Deng, Li bing Bai, et al. Enhanced laser-based magneto-optic imaging system for nondestructive evaluation applications[J]. IEEE Transction on Instrumentaion and Measurement, 2013, (62):1192-1198.
    [5] 郭从洲, 秦志远, 时文俊. 基于能量泛函和视觉特性的全变分图像降噪模型[J]. 中国图象图形学报, 2014, 19(9):1282-1287. Guo Congzhou, Qin Zhiyuan, Shi Wenjun. ROF image denoising model based on energy functionals and HVS[J]. Journal of Image and Graphics, 2014, 19(9):1282-1287.
    [6] Miyoun Jung, Antonio Marquina, Luminita A. Vese. Variational multiframe restoration of images degraded by noisy blur kernels[J]. Journal of Computational and Applied Mathematics, 2013, (240):123-134.
计量
  • 文章访问数:  300
  • HTML全文浏览量:  7
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08

目录

    /

    返回文章
    返回