高级检索

激光深熔焊过程熔池小孔发声数值计算与试验分析

敖三三, 罗震, 黄尊月, 冯梦楠

敖三三, 罗震, 黄尊月, 冯梦楠. 激光深熔焊过程熔池小孔发声数值计算与试验分析[J]. 焊接学报, 2016, 37(11): 93-98.
引用本文: 敖三三, 罗震, 黄尊月, 冯梦楠. 激光深熔焊过程熔池小孔发声数值计算与试验分析[J]. 焊接学报, 2016, 37(11): 93-98.
AO Sansan, LUO Zhen, HUANG Zunyue, FENG Mengnan. Numerical calculation and experimental analysis based on acoustic emission of molten pool keyhole in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 93-98.
Citation: AO Sansan, LUO Zhen, HUANG Zunyue, FENG Mengnan. Numerical calculation and experimental analysis based on acoustic emission of molten pool keyhole in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 93-98.

激光深熔焊过程熔池小孔发声数值计算与试验分析

基金项目: 国家自然科学基金资助项目(51405335、51275342);中国博士后特别资助项目(2014T70212)

Numerical calculation and experimental analysis based on acoustic emission of molten pool keyhole in laser deep penetration welding

  • 摘要: 激光深熔焊过程中产生的声信号是激光焊接过程质量检测的重要参量.文中对3.5 mm厚的低碳钢板进行焊接速度分别为3,4和5 cm/s的工艺试验,得到了三种典型的熔池小孔,即平底形熔池小孔、锥形熔池小孔和匙形熔池小孔.通过对声信号的频谱分析,得到这三种不同形状的熔池小孔的共振频率分别为:1 503.9 Hz、1 894.53 Hz和2 792.96 Hz.同时,文中对试验得到的三种形状的熔池小孔发声过程进行了数值分析,得到了对应的共振频率,分别为:1 453.125 Hz、1 890.625 Hz和2 750 Hz.数值计算得到的结果与试验结果误差在5%范围内.结果表明,文中所建立的熔池小孔模型能很好的反映出实际的焊接过程声信号的声场分布,为声信号在质量检测中的应用提供理论基础.
    Abstract: Acoustic signal generated in the laser deep penetration welding process is an important parameter for quality detection. In this paper, welding experiments were performed on a 3.5 mm thick carbon steel plate with welding speed of 3 cm/s, 4 cm/s and 5 cm/s respectively. Three typical keyhole shapes of were obtained, namely flat shape, conical shape and spoon shape. The resonant frequencies of the acoustic signal of three typical keyholes obtained in the experiments are 1503.9Hz, 1894.53Hz and 2792.96Hz by time-varying frequency analysis s. The predicted oscillation frequencies of the keyholes by simulation are 1453.125 Hz, 1890.625 Hz and 2 750 Hz, which agree the experimental results within 5% errorss. The results show that the proposed model for predicting the acoustic radiation generated by the keyhole vibration in laser deep penetration is effective.
  • [1] 敖三三, 罗震, 单平, 等. Inconel 601镍基高温合金激光焊焊缝显微组织[J]. 中国有色金属学报, 2015, 25(8):1-9. Ao Sansan, Luo Zhen, Shan Ping, et al. Microstructure of inconel 601 nickel-based superalloy laser welded joint[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8):1-9.
    [2] 王腾, 高向东. 大功率碟形激光焊支持向量回归熔宽预测算法[J]. 焊接学报, 2013, 34(5):25-28. Wang Teng, Gao Xiangdong. Support vector regression algorithm for fusion width prediction in high-power disc laser welding[J]. Transactions of the China Welding Institution, 2013, 34(5):25-28.
    [3] 黄尊月, 罗震, 姚杞,等. 薄板激光焊接热变形的检测[J]. 焊接学报, 2015, 36(7):47-50. Huang Zunyue, Luo Zhen, Yao Qi, et al. Detection of aluminum alloy sheet deformation during laser beam welding[J]. Transactions of the China Welding Institution, 2015, 36(7):47-50.
    [4] 蔡华, 肖荣诗. 薄板铝合金高功率CO2激光与光纤激光焊接飞溅特性对比分析[J]. 焊接学报, 2013, 34(2):11-14. Cai Hua, Xiao Rongshi. Spatter characteristics analysis of thin aluminum alloy welding by the high power CO2 laser and fiber laser[J]. Transactions of the China Welding Institution, 2013, 34(2):11-14.
    [5] 王旭友, 孙谦, 王威, 等. 激光焊接中的等离子体变化规律及气孔缺陷快速测试方法-检测信号整体分析方法[J]. 焊接学报, 2016, 37(3):45-48. Wang Xuyou, Sun Qian, Wang Wei, et al. The law of the plasma changes and the rapid test methods of the hole defects in laser welding-Analysis method of the detection signals[J]. Transactions of the China Welding Institution, 2016, 37(3):45-48.
    [6] Park Y W, Park H, Rhee S, et al. Real time estimation of CO2laser weld quality for automotive industry[J]. Optics & Laser Technology, 2002, 34(2):135-142.
    [7] Li L, Brookfield D J, Steen W M. Plasma charge sensor for in-process, non-contact monitoring of the laser welding process[J]. Measurement Science and Technology, 1996, 7(4):615.
    [8] Li L. A comparative study of ultrasound emission characteristics in laser processing[J]. Applied Surface Science, 2002, 186(4):604-610.
    [9] Ao Sansan, Luo Zhen. Simulation and experimental analysis of acoustic signal characteristics in laser welding[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4):277-287.
    [10] Luo H, Zeng H, Hu L J, et al. Application of artificial neural network in laser welding defect diagnosis[J]. Journal of Materials Processing Technology, 2005, 170(2):403-411.
    [11] Gu Hand Duley W W. Resonant acoustic emission during laser welding of metals[J]. Journal of Physics D:Applied Physics, 1996, 29(3):550-555.
    [12] Klemens P G. Heat balance and flow conditions for electron beam and laser welding[J]. Journal of Applied Physics, 1976, 47(5):2165-2174.
    [13] Kroos J, Gratzke U, Vicanek M, et al. Dynamic behavior of the keyhole in laser welding, Journal of Physics D:Applied Physics[J]. 1993, 26(3):481-486.
    [14] Kroos J, Gratzke U, Simon G. Towards a self-consistent model of the keyhole in penetration laser beam welding[J]. Journal of Physics D:Applied Physics, 1993, 26(3):474-480.
    [15] Klein T, M.Vicanek, J.Kroos. Oscillations of the keyhole in penetration laser beam welding[J]. Journal of Physics D:Applied Physics, 1994, 27(10):2023-2030.
  • 期刊类型引用(2)

    1. 刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 . 百度学术
    2. 王东亮,尹东海,裴雷振,陆凯雷. ZAM薄板激光焊接性能研究与防锈补偿. 热加工工艺. 2020(19): 145-149 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  514
  • HTML全文浏览量:  2
  • PDF下载量:  203
  • 被引次数: 3
出版历程
  • 收稿日期:  2014-10-26

目录

    /

    返回文章
    返回