高级检索

缆式焊丝埋弧焊残余应力有限元分析

方臣富, 杨志东, 陈勇, 胥国祥, 江家忠, 乔建设

方臣富, 杨志东, 陈勇, 胥国祥, 江家忠, 乔建设. 缆式焊丝埋弧焊残余应力有限元分析[J]. 焊接学报, 2016, 37(11): 1-6.
引用本文: 方臣富, 杨志东, 陈勇, 胥国祥, 江家忠, 乔建设. 缆式焊丝埋弧焊残余应力有限元分析[J]. 焊接学报, 2016, 37(11): 1-6.
FANG Chenfu, YANG Zhidong, CHEN Yong, XU Guoxiang, JIANG Jiazhong, QIAO Jianshe. Finite element analysis of residual stress of submerged arc welded joint using cable-type wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 1-6.
Citation: FANG Chenfu, YANG Zhidong, CHEN Yong, XU Guoxiang, JIANG Jiazhong, QIAO Jianshe. Finite element analysis of residual stress of submerged arc welded joint using cable-type wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 1-6.

缆式焊丝埋弧焊残余应力有限元分析

基金项目: 国家自然科学基金资助项目(51275224,51575250,51575252,51505200);江苏省高校优势学科建设工程资助项目

Finite element analysis of residual stress of submerged arc welded joint using cable-type wire

  • 摘要: 采用直径为2.4 mm的7根分焊丝,其中一根分焊丝(称为中心丝)位于中间,其余6根分焊丝(称为外围丝)围绕中心丝绞合组成直径为7.2 mm的缆式焊丝.试验用22 mm厚DH36船用钢板进行平对接缆式焊丝埋弧焊,采用小孔法对焊接接头进行残余应力测试;基于热弹塑性理论,建立缆式焊丝埋弧焊残余应力有限元数值分析模型,利用ANSYS软件对缆式焊丝埋弧焊残余应力进行模拟计算.结果表明,缆式焊丝埋弧焊的应力分布特征和幅值与单丝埋弧焊相近,纵向应力在焊缝及近缝区表现为拉应力,应力峰值为363 MPa;横向应力较小,焊缝上下部位呈现拉应力,中间呈现压应力.
    Abstract: The cable-type welding wire (CWW) was used as filler for submerged arc welding (SAW)process, which is comprised of seven wires with a diameter of 2.4 mm. One wire is in the center, while others uniformly distribute around it. The finite element numerical analysis model was established for the residual stress of CWW-SAW joint, based on thermal elastoplastic theory. The residual stress was simulated through ANSYS software. The experimental results obtained by the hole drilling method agreed well with the simulated results on the top surface, verifying the exactness of the model. The results show that the stress distribution and amplitude of the CWW-SAW joint are basically corresponding with that of the single-wire SAW joint. The longitudinal stress presented tensile effect in the weld seam and at the region near fusion line, while the peak stress was 363 MPa. The transverse stress was a bit small, presenting tensile effect on upper and the lower parts while compressed effect appeared in middle part.
  • [1] Cao M Q, Zou Z D, Zhang S S, et al. Present situation and development of twin-wire Arc welding[J]. Journal of Shandong University of Science and Technology (Natural Science), 2008, 2:021.
    [2] Tusek J, Suban M. High-productivity multiple-wire submerged-arc welding and cladding with metal-powder addition[J]. Journal of Materials Processing Technology, 2003, 133(1):207-213.
    [3] 林尚扬. 我国焊接生产现状与焊接技术的发展[J]. 船舶工程, 2005, 27(5):15-24. Lin Shangyang. Welding production status and the development of welding technology in China[J]. Ship Engineering, 2005, 27(5):15-24.
    [4] 杨志东. 新型粗丝埋弧焊工艺研究[D]. 镇江:江苏科技大学, 2013.
    [5] 方臣富, 陈志伟, 胥国祥, 等. 缆式焊丝CO2气体保护焊工艺研究[J]. 金属学报, 2012, 48(11):1299-1305. Fang Chenfu, Chen Zhiwei, Xu Guoxiang, et al. Study of cable-type welding wire CO2 gas shielded metal arc welding process[J]. Acta Metallurgica Sinica, 2012, 48(11):1299-1305.
    [6] 方臣富, 王海松, 刘川, 等. 缆式焊丝CO2气体保护焊接头残余应力高效数值计算和试验[J]. 焊接学报, 2012, 33(5):17-20. Fang Chenfu, Wang Haisong, Liu Chuan, et al. Cable type welding wire CO2 gas shielded welding residual stresses efficient numerical computation and experiment[J]. Transactions of the China Welding Institution, 2012, 33(5):17-20.
    [7] Fang C F, He B, Zhao Z C, et al. Comparative study on the processing property between cable-type welding wire CO2 gas shielded welding and SAW[J]. Journal of Iron and Steel Research, International, 2012, 20(4):84-89.
    [8] Yang Z D, Fang C F, Chen Y, et al. Arc behavior and droplet transfer of CWW CO2 welding[J]. Journal of Iron and Steel Research, International. 2016, 23(8):808-814.
    [9] 武传松. 焊接热过程与熔池形态[M]. 北京:机械工业出版社, 2007.
    [10] 胥国祥, 杜宝帅, 董再胜, 等. 厚板多层多道焊温度场的有限元分析[J]. 焊接学报, 2013, 34(5):87-90. Xu Guoxiang, Du Baoshuai, Dong Zaisheng, et al. Finite element anlysis of temperature field in multi-pass welding of thick steel plate[J]. Transactions of the China Welding Institution, 2013, 34(5):87-90.
    [11] Cho J R, Lee B Y, Moon Y H, et al. Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments[J]. Journal of Materials Processing Technology, 2004, 155:1690-1695.
    [12] 谭真, 郭文广. 工程合金热物性[M]. 北京:合金工业出版社, 1994.
  • 期刊类型引用(5)

    1. 杨泽坤,徐锴,杨战利,张焱,费大奎,周坤,杨永波. 缆式焊丝GMAW焊缝截面侧偏行为机理分析. 焊接学报. 2024(01): 83-87+134 . 本站查看
    2. 朱达新,唐菊萍. 钢缆式焊丝埋弧焊工艺试验. 装备机械. 2022(04): 51-53 . 百度学术
    3. 陈峯,王凯,江泽新,马金军,罗子艺. 船用高强钢焊接技术的研究现状与展望. 精密成形工程. 2020(04): 65-75 . 百度学术
    4. 徐锴,武鹏博,黄瑞生,梁晓梅,梁裕. 多股绞合焊丝研究与应用进展. 焊接. 2020(07): 6-18+61 . 百度学术
    5. 浦娟,谢依汝,胡庆贤,胥国祥,朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟. 材料导报. 2019(04): 689-693 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  713
  • HTML全文浏览量:  3
  • PDF下载量:  287
  • 被引次数: 19
出版历程
  • 收稿日期:  2015-10-07

目录

    /

    返回文章
    返回