高级检索

45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金

王小荣, 王朝琴, 何鹏, 林铁松

王小荣, 王朝琴, 何鹏, 林铁松. 45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金[J]. 焊接学报, 2016, 37(10): 73-76.
引用本文: 王小荣, 王朝琴, 何鹏, 林铁松. 45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金[J]. 焊接学报, 2016, 37(10): 73-76.
WANG Xiaorong, WANG Zhaoqin, HE Peng, LIN Tiesong. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 73-76.
Citation: WANG Xiaorong, WANG Zhaoqin, HE Peng, LIN Tiesong. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 73-76.

45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金

基金项目: 国家自然科学基金资助项目(51465030,51275135)

Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark

  • 摘要: 采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了AlCoCrFeNi高熵合金多层涂层.通过SEM和XRD研究了AlCoCrFeNi高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质量过渡规律,并通过Bézier曲线拟合出电极长度消耗曲线、阳极质量损失曲线、和阴极质量增加曲线.电极长度消耗规律和质量过渡规律为实现多层连续不间断沉积和涂层显微结构的精确控制奠定基础.高能微弧火花数控化沉积工艺为功能涂层的制备提供了新方法.
    Abstract: The AlCoCrFeNi high-entropy alloy coatings (HEAC) were prepared on 45 steel substrate by numerical control high energy micro arc spark deposition process with parametric equidistance spot-welding pattern deposition strategy. The surface morphology and phase composition of the coating were investigated by SEM and XRD. By taking layer number as variable, the consumption law of electrode length and the mass transfer of electrode/substrate were studied. The consumption curve, anode mass loss curve, and cathode mass gain were fitted using Bézier curve. The electrode length consumption law and mass transfer law lay foundations for the continuous deposition and the precise control of the microstructure of multi-layer AlCoCrFeNi HEAC. The numerical control high energy micro arc spark deposition process provides a new coating preparation method for functional coatings.
  • [1] Heard D W, Boselli J, Rioja R, et al. Interfacial morphology development and solute trapping behavior during rapid solidification of an Al-Li-Cu alloy[J]. Acta Materialia, 2013, 61(5): 1571-1580.
    [2] 汪瑞军. 钛合金表面WC-Co强化层的电火花表面强化行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.
    [3] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
    [4] Zhang H, He Y Z, Pan Y, et al. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy[J]. Journal of Alloys and Compounds, 2014, 600: 210-214.
    [5] Wang W f, Wang M c, Sun F j, et al. Microstructure and cavitation erosion characteristics of Al-Si alloy coating prepared by electrospark deposition[J]. Surface and Coatings Technology, 2008, 202: 5116-5121.
    [6] Galinov I V, Luban R B. Mass transfer trends during electrospark alloying[J]. Surface & Coatings Technology, 1996, 79: 9-18.
    [7] Changjun C, Maocai W, Yiming L, et al. Mass transfer trends and the formation of a single deposition spot during high-energy micro-arc alloying of AZ31 mg alloy[J]. Journal of Materials Processing Technology, 2008, 198: 275-280.
计量
  • 文章访问数:  570
  • HTML全文浏览量:  3
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-20

目录

    /

    返回文章
    返回