[1] |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings forgas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284.
|
[2] |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress of Materials and Science, 2001, 46(5): 505-553.
|
[3] |
Li C J, Li Y, Yang G J, et al. Evolution of lamellar interface cracks during isothermal cyclic test of plasma-sprayed 8YSZ coating with a columnar-structured YSZ interlayer[J]. Journal of Thermal Spray Technology, 2013, 22(8): 1374-1382.
|
[4] |
Guo H B, Vaben R, Stäver D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crackdensity[J]. Surface and Coatings technology, 2004, 186(3): 353-363.
|
[5] |
ASTMC1525-02. Standard test method for determination of thermal shock resistance for advanced ceramics by water quenching, annual book of ASTM Standards[S]. ASTM International, PA, USA, 2002.
|
[6] |
Loghman-EstarkiM R, ShojaRazavi R, Edris H, et al. Life time of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment[J]. Ceramics International, 2014, 40(1): 1405-1414.
|
[7] |
LiC J, Ohmori A. Relationship between the microstructure and properties of thermally sprayed deposits[J]. Journal of Thermal Spray Technology, 2002, 11(3): 365-374.
|
[8] |
XingY Z, Li Y, Li C J, et al. Influence of substrate temperature on microcracks formation in plasma-sprayed yttria-stabilized irconia splats[J]. Key Engineering Materials, 2008, 373: 69-72.
|
[9] |
Guo H, Murakami H, Kuroda S. Effects of heat treatment on microstructures and physical properties of segmented thermal barrier coatings[J]. Materials Transactions, 2005, 46(8): 1775-1778.
|
[10] |
Wang W Z, Wang L B, Yu Z X, et al. Effect of pore size on the plasma sprayed coating's stress distribution[C]//ITSC2014, spain Barcelona, 2014: 444-450.
|