高级检索

热循环条件下高密度倒装微铜柱凸点失效行为分析

任宁, 田野, 吴丰顺, 尚拴军

任宁, 田野, 吴丰顺, 尚拴军. 热循环条件下高密度倒装微铜柱凸点失效行为分析[J]. 焊接学报, 2016, 37(10): 25-28.
引用本文: 任宁, 田野, 吴丰顺, 尚拴军. 热循环条件下高密度倒装微铜柱凸点失效行为分析[J]. 焊接学报, 2016, 37(10): 25-28.
REN Ning, TIAN Ye, WU Fengshun, SHANG Shuanjun. Analysis on failure behavior of micro copper pillar bump for high density flip chip packaging under thermal cycle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 25-28.
Citation: REN Ning, TIAN Ye, WU Fengshun, SHANG Shuanjun. Analysis on failure behavior of micro copper pillar bump for high density flip chip packaging under thermal cycle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 25-28.

热循环条件下高密度倒装微铜柱凸点失效行为分析

基金项目: 国家自然科学基金资助项目(U1504507);河南省科技攻关资助项目(162102410018)

Analysis on failure behavior of micro copper pillar bump for high density flip chip packaging under thermal cycle

  • 摘要: 基于圣维南原理,采用全局模型和子模型相结合的建模方针,建立倒装芯片封装的有限元模型.分析热循环条件下微铜柱凸点的应力及应变分布,研究高密度倒装芯片封装微铜柱凸点的失效机理,对关键微铜柱凸点的裂纹生长行为进行分析.结果表明,距芯片中心最远处的微铜柱凸点具有最大的变形与应力,为封装体中的关键微铜柱凸点;累积塑性应变能密度主要分布在关键微铜柱凸点的基板侧,在其外侧位置最大,向内侧逐渐减小,这表明裂纹萌生在基板侧微铜柱凸点外侧,向内侧扩展,试验结果与模拟结果相一致.
    Abstract: Based on the Saint Venant's principle, the finite element model of flip chip packaging was established by combing the global model and sub model. The stress and strain of the micro copper pillar bumps were analyzed to study the failure mechanism of the micro copper pillar bumps by high density flip chip packaging and to analyze the crack growth behavior of the key micro copper pillar bump. The results show that the micro copper pillar bump with the maximum distance from the center of the chip has the biggest deformation and the highest stress, which is the key micro copper pillar bump of the flip chip packaging. The accumulative plastic strain energy density are mainly distributed on the substrate side of the key micro copper pillar bump, and the maximum accumulative plastic strain energy density is outside of the micro copper pillar bump, and gradually decreases towards the inside, which shows that the crack initiation appears on the outside of the micro copper pillar bump at substrate side, and expands from the outside to the inside of the solder throughout the whole micro copper pillar bump, eventually lead to the failure. The results are consistent with the simulation results.
  • [1] Gallois-Garreignot S, Benzima N, Benmussa E, et al. Qualification of bumping processes: experimental and numerical investigations on mechanical stress and failure modes induced by shear test[J]. Microelectronics Reliability, 2015, 55(6): 387-391.
    [2] Fiori V, Ewuame K A, Gallois-Garreignot S, et al. Numerical analysis of thermo-mechanical and mobility effects for 28 nm node and beyond: comparison and design consequences over bumping technologies[J]. Microelectronics Reliability, 2014, 54(4): 764-772.
    [3] Chen K M, Wu C Y, Wang C H, et al. An RDI UBM structural design for solving ultralow-K, delamination problem of Cu pillar bump flip chip BGA packaging[J]. Journal of Electronic Materials, 2014, 43(11): 4229-4240.
    [4] Zimprich P, Saeed U, Weiss B, et al. Constraining effects of lead-free solder joints during stress relaxation[J]. Journal of Electronic Materials, 2009, 38(3): 392-399.
    [5] Tunga K, Sitaraman S K. Predictive model development for life prediction of pbga packages with SnAgCu solder joints[J]. IEEE Transactions on Components & Packaging Technologies, 2010, 33(1): 84-97.
    [6] Kim J W, Kim D G, Hong W S, et al. Evaluation of solder joint reliability in flip-chip packages during accelerated testing[J]. Journal of Electronic Materials, 2005, 34(12): 1550-1557.
    [7] Chen K M. Ultra low-k die crack study for lead free solder bump flip-chip packaging[J]. Journal of Materials Science Materials in Electronics, 2011, 22(8): 988-994.
    [8] Jhou J R, Tsai M Y, Wu C Y, et al. Thermal stresses and deformations of Cu pillar flip chip bga package: Analyses and measurements[C]//International Microsystems Packaging Assembly & Circuits Technology Conference. IEEE, Taipel, Taiwan 2010: 1-4.
    [9] 皋利利, 薛松柏, 张亮, 等. FCBGA元器件焊点可靠性的有限元分析[J]. 焊接学报, 2008, 29(8): 73-76. Gao Lili, Xue Songbai, Zhang Liang, et al. Finite element analysis of solder joints reliability for FCBGA components[J]. Transactions of the China Welding Institution, 2008, 29(8): 73-76.
    [10] 秦红波, 李望云, 李勋平, 等. BGA结构无铅微焊点的低周疲劳行为研究[J]. 机械工程学报, 2014, 50(20): 54-62. Qin Hongbo, Li Wangyun, LI Xunping, et al. Research on low cycle fatigue behavior of BGA structure lead-free solder joints[J]. Journal of Mechanical Engineering, 2014(20): 54-62.
    [11] Herkommer D, Punch J, Reid M. A reliability model for SAC solder covering isothermal mechanical cycling and thermal cycling conditions[J]. Microelectronics Reliability, 2010, 50(1): 116-126.
    [12] 田野. 倒装芯片与OSP铜焊盘组装焊点的界面反应及可靠性研究[D]. 武汉: 华中科技大学, 2013.
    [13] Hsieh M C, Lee C C, Li C H. Reliability assessments and designs for fine pitch flip chip packages with cu column bumps[C]//2012 Int. Microsystems, Packaging, Assembly and Circuits Technology Conference. IEEE, Taipei, Taiwan, 2012: 280-283.
  • 期刊类型引用(6)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 . 百度学术
    2. 甘世明,张佳欣,包晓艳,韩永全,孙振邦. 能量配比对6 mm 7A52铝合金板材VPPA-MIG复合焊接残余应力分布的影响. 内蒙古工业大学学报(自然科学版). 2024(05): 461-466 . 百度学术
    3. 邱劲松,马佳良,杨鑫华,许鸿吉. 钻孔法测大型构件焊接残余应力试验的误差分析与优化. 焊接技术. 2022(03): 27-33+114 . 百度学术
    4. 梁巧云,蔺治强,张吉银,姚倡锋. 叶片铣削及喷丸加工残余应力测试与三维表征. 机械科学与技术. 2022(11): 1794-1804 . 百度学术
    5. 黄如旭,谢晓忠,张平平,祁江涛,李艳青,黄进浩. 基于盲孔法的水下承压结构残余应力测试研究. 舰船科学技术. 2021(07): 23-27 . 百度学术
    6. 李刚,李中双,符伟,谭俊哲,杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响. 材料导报. 2021(S2): 325-328 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  803
  • HTML全文浏览量:  20
  • PDF下载量:  423
  • 被引次数: 8
出版历程
  • 收稿日期:  2015-12-01

目录

    /

    返回文章
    返回