高级检索

X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响

张楠, 陈延清, 徐晓宁, 刘兴全

张楠, 陈延清, 徐晓宁, 刘兴全. X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响[J]. 焊接学报, 2016, 37(9): 119-124.
引用本文: 张楠, 陈延清, 徐晓宁, 刘兴全. X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响[J]. 焊接学报, 2016, 37(9): 119-124.
ZHANG Nan, CHEN Yanqing, XU Xiaoning, LIU Xingquan. Effect of Cu-Ni components in X80 pipeline and heat input on discretization of toughness in CGHAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 119-124.
Citation: ZHANG Nan, CHEN Yanqing, XU Xiaoning, LIU Xingquan. Effect of Cu-Ni components in X80 pipeline and heat input on discretization of toughness in CGHAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 119-124.

X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响

Effect of Cu-Ni components in X80 pipeline and heat input on discretization of toughness in CGHAZ

  • 摘要: 利用Gleeble-1500模拟实际焊接条件下双丝纵列焊接热循环过程,通过冲击试验、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)以及电子背散射衍射(EBSD)对不同Cu-Ni含量的X80管线钢模拟焊接粗晶区(CGHAZ)的显微组织、马/奥组元(M/A)分布及形态、冲击韧性和室温组织粗化程度进行了研究,对低Cu-Ni含量的X80管线钢在不同焊接热输入下进行了显微组织、晶粒粗化程度和冲击韧性的表征. 结果表明,随着奥氏体稳定性元素含量的降低,CGHAZ平均晶粒尺寸无明显变化,但晶粒尺寸离散度增加;原奥氏体向贝氏体转变温度升高,晶界渗碳体含量增加,且粒状贝氏体的晶粒取向选择过于单一,大角度晶界(>15°)密度显著降低;M/A组元由块状向长条状转变且数量明显减少. 上述原因使X80管线钢模拟CGHAZ的冲击韧性离散性增加,但随着焊接热输入的降低,模拟CGHAZ晶粒尺寸离散度降低,大角度晶界(>15°)密度显著提高,这使X80管线钢模拟焊接接头的CGHAZ冲击吸收功得以稳定.
    Abstract: In recent years, the strength and toughness of pipeline steels were considered by aiming for setting alloy and branching out thickness. However, welding would worsen its microstructure and toughness in coarse grain heat affect zone (CGHAZ) on microalloyed pipeline steel with much lower cost, especially. In this paper, the microallyed X80 pipeline steels were chosen, and single welding thermal-cycles to simulating two-wires longitudinal submerged arc welding (SAW) were carried out by Gleeble-1 500 to study the correlation of microstructure and toughness in simulated CGHAZ. The values of toughness of the simulated CGHAZ in different Cu-Ni components and dissimilar welding heat input were tested, and corresponding evolution characteristics of microstructure in the same area were investigated by OM, SEM, TEM and EBSD. The results showed that the average grain size in simulated CGHAZ changed indistinctively with the decrease of austenite-stability alloys, but the discretization of grain size in CGHAZ increased. Moreover, the transition temperature from prior austenite to bainite was decreased. At the same time, the cementite was precipitated between grain boundaries during cooling process. Otherwise, the misorientation between granular bainite grains was small, i.e., it would decrease the density of high angle boundary (≥15°) in case of much lower Cu-Ni components. Furthermore, the shape of M/A has been changed from block-like structure to strip-like one during the decrease of austenite-stability alloys. Based on the mentioned results above, it has come true that discretization of toughness in stimulated CGHAZ of the X80 pipeline steel was increased. Oppositely, the discretization of grain size in stimulated CGHAZ decreased and the density of high angle boundary (≥15°) increased while the welding heat input was declining, which made the stimulated CGHAZ toughness of X80 pipeline steels stabilized.
  • [1] 缪成亮, 尚成嘉, 王学敏, 等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Miao Chengliang, Shang Chengjia, Wang Xuemin, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.
    [2] 郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1-10. Zheng Lei, Fu Junyan. Recrnt development of performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10.
    [3] 陈翠欣, 李午申, 王庆鹏, 等. X80管线钢焊接粗晶区的组织和性能[J]. 焊接学报, 2005, 26(6): 77-80. Chen Cuixin, Li Wushen, Wang Qingpeng, et al. The microstructure and properties of CGHAZ in X80 pipeline steel[J]. Transactions of the China Welding Institution, 2005, 26(6): 77-80.
    [4] Naylor J P, Krahe P R. Effect of the bainite packet size on toughness[J]. Metallurgical Transactions, 1974, 5(7): 1699-1701.
    [5] 薛小怀, 周昀, 钱百年, 等. X80管线钢焊接粗晶区组织与韧性的研究[J]. 上海交通大学学报, 2003, 37(12): 1854-1857. Xue Xiaohuai, Zhou Jun, Qian Bainian, et al. Coarse grain heat affect zone microstructure and toughness of X80 pipeline steel[J]. Journal of Shanghai Jiaotong University, 2003, 37(12): 1854-1857.
    [6] 贺信莱, 尚成佳, 杨善武, 等. 高性能低贝氏体钢[M]. 北京: 冶金工业出版社, 2008.
    [7] Diaz-fuentes M, Iza-mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. study of their toughness behavior[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34A(11): 2505-2516.
    [8] Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel[J]. Acta Materialia, 2004, 52(19): 5511-5518.
    [9] Koo J Y, Luton M J, Bangaru N V, et al. Metallurgical design of ultra high-strength steels for gas pipelines[J]. International Journal of Offshore and Polar Engineering, 2004, 14(1): 2-10.
  • 期刊类型引用(7)

    1. 高东,李永利,邓颖,周好斌. 旁路耦合电弧TIG焊原理及工艺研究. 热加工工艺. 2025(01): 65-69 . 百度学术
    2. 孟美情,韩俭,朱瀚钊,梁哲滔,蔡养川,张欣,田银宝. 基于多丝电弧增材制造研究现状. 材料工程. 2025(05): 46-62 . 百度学术
    3. 王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 . 百度学术
    4. 李博洋,巴现礼,陈帅帅,徐国敏,刘黎明. 不同路径下的低碳钢三丝间接电弧增材制造组织与性能. 焊接技术. 2024(10): 1-6+145 . 百度学术
    5. 张加恒,黄祎,郭顺,杨东青,闫德俊,李东,王克鸿. 超音频MIG辅助三丝电弧增材制造工艺研究. 电焊机. 2023(02): 104-110 . 百度学术
    6. 吴涛,谭振,王立伟,梁志敏,汪殿龙. 异质双丝间接电弧增材制造Al-Mg-Cu合金组织与力学性能. 焊接学报. 2023(10): 64-70+136 . 本站查看
    7. 朱强,姚屏,许斯帆,许可昱. 316L不锈钢电弧增材制造工艺研究. 精密成形工程. 2023(11): 164-170 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  413
  • HTML全文浏览量:  2
  • PDF下载量:  510
  • 被引次数: 8
出版历程
  • 收稿日期:  2014-08-18

目录

    /

    返回文章
    返回