高级检索

电场作用下40Cr/QCr0.5的超塑性固态压接

王要利, 程光辉, 张柯柯, 于华

王要利, 程光辉, 张柯柯, 于华. 电场作用下40Cr/QCr0.5的超塑性固态压接[J]. 焊接学报, 2016, 37(9): 46-50.
引用本文: 王要利, 程光辉, 张柯柯, 于华. 电场作用下40Cr/QCr0.5的超塑性固态压接[J]. 焊接学报, 2016, 37(9): 46-50.
WANG Yaoli, CHENG Guanghui, ZHANG Keke, YU Hua. Superplastic solid state pressure welding of 40Cr/QCr0.5 under electric field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 46-50.
Citation: WANG Yaoli, CHENG Guanghui, ZHANG Keke, YU Hua. Superplastic solid state pressure welding of 40Cr/QCr0.5 under electric field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 46-50.

电场作用下40Cr/QCr0.5的超塑性固态压接

基金项目: 国家自然科学基金重点资助项目(U1502274);河南省创新型科技团队资助项目(C20150014)

Superplastic solid state pressure welding of 40Cr/QCr0.5 under electric field

  • 摘要: 基于外加电场可改善材料的超塑性和钢与铜超塑性固态压接的可行性,将材料电致超塑性效应与固态压接技术有机结合以开发新的电致超塑性固态压接技术,具有重要的使用价值和工业应用前景. 结果表明,在非真空、无保护气氛下,预压应力为56.6 MPa,初始应变速率为1.5×10-4/s、压接温度为710~800℃、压接时间为0~8 min、电场强度为0~3 kV/cm时,40Cr/QCr0.5压接接头的抗拉强度达到甚至超过QCr0.5母材强度,QCr0.5侧接头胀大率不超过4%.当电场强度为3 kV/cm时,40Cr与QCr0.5的压接接头形成了良好的冶金结合.
    Abstract: Based on an external electric field improving superplasticity of materials and the feasibility of isothermal superplastic solid state pressure welding of steel and copper alloy, a new technology of electro-superplasticity solid-state pressure welding is developed, which has an important value and prospects for industrial applications. The results show that 40Cr and QCr0.5 can be welded with the application of an external electrical field 0~3 kV/cm under the condition of non-vacuum, non-shield gas, welding prepressure of 56.6 MPa, initial strain rate of 1.5×104/s, pressure welding temperature of 710~800℃ and pressure welding time of 0~8 min. The tensile strength of the joint is up to or exceed that of QCr0.5 base metal, and the expanded rate of QCr0.5 does not exceed 4%, and welding joint of 40Cr and QCr0.5 has formed a good metallurgical bonding when the electric field intensity is 3 kV/cm.
  • [1] 丁桦, 张凯锋. 材料超塑性研究的现状与展望[J]. 中国有色金属学报, 2004, 14(7): 1059-1064. Ding Hua, Zhang Kaifeng. Current status and developments in superplastic studies of materials[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(7): 1059-1064.
    [2] 张柯柯, 石红信, 于华, 等. 异种钢恒温超塑焊接头特征区域分析[J]. 焊接学报, 2008, 29(3): 93-96. Zhang Keke, Shi Hongxin, Yu Hua, et al. Analysis of characteristic zones of isothermal superplastic welded joint of heterogeneous steels[J].Transactions of the China Welding Institution, 2008, 29(3): 93-96.
    [3] 吴诗惇. 金属超塑性变形理论[M]. 北京: 国防工业出版社, 1997.
    [4] 张柯柯, 涂益民. 特种先进连接方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007.
    [5] Yang Wenpeng, Guo Xuefeng, Yang Kaijun. Low temperature quasi-superplasticity of ZK60 alloy prepared by reciprocating extrusion[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 255-261.
    [6] Zhang Keke, Zhang Zhanling, Liu Shuai, et al. Isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels based on surface modification[J]. China Welding, 2009, 18(3): 32-36.
    [7] Di Yang, Conrad H. Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl[J]. Intermetallics, 2001, 9: 943-947.
    [8] 李淼泉, 吴诗惇. LY12铝合金超塑性变形时的电场效应[J]. 金属学报, 1995, 31(6): 272-276. Li Miaoquan, Wu Shidun. Electric field modification during superplastic deformation of LY12CZ duralumn[J]. ACTA Metallurgica Sincia, 1995, 31(6): 272-276.
    [9] Conrad H, Di Yang, Becher P. Effect of an applied electric field on the flow stress of ultrafine-grained 2.5Y-TZP at high temperatures[J]. Materials Science and Engineering A, 2008, 477: 358-365.
    [10] Baranov Y V. Effect of electrostatic fields on mechanical characteristics and structure of metals and alloys[J]. Materials Science and Engineering A, 2000, 287: 288-300.
    [11] Di Yang, Hans Conrad. Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field[J]. Scripta Materialia, 2010, 63: 328-331.
    [12] Stephen Starnes, Hans Conrad. Grain size distribution in ultrafine-grained yttria-stabilized zirconia deformed without and with an electric field[J]. Scripta Materialia, 2008, 59: 1115-1118.
    [13] Hetherly J, Martinez E, Di Z F, et al. Helium bubble precipitation at dislocation networks[J]. Scripta Materialia, 2012, 66: 17-20.
    [14] Souta Matsusaka, Takehiro Watanabe. Improvement in laser micromachinability of borosilicate glass by electric field assisted solid-state ion exchange[J]. Scripta Materialia, 2010, 62: 141-143.
    [15] 张柯柯, 岳云, 马宁, 等. 钢恒温超塑焊接过程中原子的动态扩散行为[J]. 焊接学报, 2010, 31(2): 61-65. Zhang Keke, Yue Yun, Ma Ning, et al. Dynamic diffusion behavior of atoms in isothermal superplastic welding of steel[J]. Transactions of the China Welding Institution, 2010, 31(2): 61-65.
    [16] 张柯柯, 马宁, 张占领, 等. 1.6%C超高碳钢的电致超塑性压缩行为及其与40Cr钢的电致超塑性焊接[J]. 材料热处理学报, 2010, 31(9): 69-74. Zhang Keke, Ma Ning, Zhang Zhan-ling, et al. Electro-superplastic compression behavior of 1.6%C ultrahigh carbon steel and its electro-superplastic welding to 40Cr steel[J]. Transactions of Materials and Treatment, 2010,31(9): 69-74.
    [17] Songlin Ran, Omer Vander Biest, Jef Vleugels.In situ platelet-toughened TiB2-SiC composites prepared by reactive pulsed electric current sintering[J]. Scripta Materialia, 2011, 64: 1145-1148.
    [18] Conrad H, P, Di Yang. Becher P. Plastic deformation of ultrafine-grained 2.5Y-TZP exposed to a dc electric field with an air gap[J]. Materials Science and Engineering A, 2008, 496: 9-13.
    [19] 周明哲, 易丹青, 尹德艳, 等. 电场对2E12铝合金中S相析出动力学的影响[J]. 中国有色金属学报, 2010, 20(7): 1290-1295. Zhou Mingzhe, Yi Danqing, Yin Deyan. et al. Effect of electric field on kinetics of formation of S phase in 2E12 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1290-1295.
    [20] 刘泽锋, 陈少平, 梁连杰, 等. 电场作用下Ti/TiAl连接及力学性能[J]. 焊接学报, 2011, 32(9): 57-61. Liu Zefeng, Chen Shaoping, Liang Lianjie, et al. Effect of current field on Ti/TiAl interface and mechanical performance[J]. Transactions of the China Welding Institution, 2011, 32(9): 57-61.
计量
  • 文章访问数:  357
  • HTML全文浏览量:  2
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09

目录

    /

    返回文章
    返回