高级检索

热冲击条件下倒装组装微焊点的可靠性——裂纹生长机理

田野

田野. 热冲击条件下倒装组装微焊点的可靠性——裂纹生长机理[J]. 焊接学报, 2016, 37(9): 43-45,50.
引用本文: 田野. 热冲击条件下倒装组装微焊点的可靠性——裂纹生长机理[J]. 焊接学报, 2016, 37(9): 43-45,50.
TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50.
Citation: TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50.

热冲击条件下倒装组装微焊点的可靠性——裂纹生长机理

基金项目: 国家自然科学基金资助项目(U1504507);河南省科技攻关资助项目(162102410018);河南工业大学高层次人才基金资助项目(2013BS052)

Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism

  • 摘要: 研究热冲击条件下细间距倒装微焊点的裂纹萌生及扩展,通过观察裂纹生长路径,并结合累积塑性应变能密度及应变在焊点上的分布,分析裂纹的生长机理. 结果表明,裂纹形成在微焊点外侧,位于镍焊盘界面IMC与焊料基体之间的界面上;随着循环次数的增加,裂纹进入镍焊盘附近的焊料基体中,沿着焊盘平行的方向扩展,累积塑性应变能密度及应变在微焊点上的分布与裂纹扩展方向一致. 对裂纹生长机理探讨可知,IMC与微焊点之间的界面处于双重应力集中状态,因此裂纹易在微焊点及IMC之间的界面上萌生;随着循环次数的增加,焊料基体的塑性变形增加,高塑性的焊料区域为裂纹扩展提供了条件.
    Abstract: In this parper, initiation and propagation of the crack in flip chip solder joints under thermal shock, were studid and growth mechanism is analyzed by crack growth path and distribution of accumulated plastic work density and plastic strain at solder joints. Based on this study, it is seen that the crack formed outside solder joint, located in the interface between interfacial IMC and solder matrix, as cycles increasing, the crack propagated into solder matrix, and grew along the pad, the distribution of accumulated plastic work and density is consistent with crack growth direction. The discussion from crack growth mechanism shows that the interface locate in double-stress-concentration, and the plastic work is bigger, therefore the crack is inclined to form in the interface between the IMC and solder joint, as cycles increasing, the plastic strain of solder matrix is increased, which causes the region of higher solder matrix providing condition for crack propagation.
  • [1] Kim J-W, Kim D-G, Hong W S, et al. Evaluation of solder joint reliability in flip-chip packages during accelerated testing[J]. Journal of Electronic Materials, 2005, 34(12): 1550-1557.
    [2] 田野, 吴懿平, 安兵, 等. 细间距倒装芯片互连过程中焊点界面金属间化合物的形成与演化[J]. 焊接学报, 2013, 34(10): 100-104. Tian Ye, Wu Yiping, An Bing, et al. Evolution of interfacial intermetallic compound in smallsolder joint of fine pitch flip chip during reflow[J]. Transactions of the China Welding Institution, 2013, 34(10): 100-104.
    [3] Andersson C, Vandevelde B, Noritake C, et al. Thermal cycling of lead-free Sn-3.8Ag-0.7Cu 388PBGA packages[J]. Soldering & Surface Mount Technology, 2009, 21(2): 28-38.
    [4] Qin F, An T, Chen N, et al. Tensile behaviors of lead-containing and lead-free solders at high strain rates[J]. Journal of Electronic Packaging, 2009, 131(031001).
    [5] 田野, 任宁. 热冲击条件下倒装组装微焊点的可靠性——寿命预测[J]. 焊接学报, 2016, 37(2): 51-54. Tian Ye, Ren Ning. Prediction of reliability of solder joint for fine pitch flip chip assemblies under thermal shock[J]. Transactions of the China Welding Institution, 2016, 37(2): 51-54.
    [6] Vandevelde B, Gonzalez M, Limaye P, et al. Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages[J]. Microelectronics Reliability, 2007, 47(2): 259-265.
    [7] Kim J W, Kim D G, Hong W S, et al. Evaluation of solder joint reliability in flip-chip packages during accelerated testing[J]. Journal of Electronic Materials, 2005, 34(12): 1550-1557.
    [8] Pang J H L, Chong D, Low T. Thermal cycling analysis of flip-chip solder joint reliability[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(4): 705-712.
    [9] 李云卿, 唐祥云, 马营生. 62Sn-36Pb-2Ag焊点的可靠性及热疲劳位错亚结构的演化分析[J]. 电子学报, 1994, 22(11): 32-35. Li Yunqing, Tang Xiangyun, Ma Yingsheng. The reliability analysis and thermal fatigue dislocation substructure evolution of 62Sn-36Pb-2Ag solder joints[J]. Acta Electonica Sinica, 1994, 22(11): 32-35.
  • 期刊类型引用(5)

    1. 陈朝晖,张弛,徐鹏,曾维,吴家金,苏炜,陈宋郊,王强. 倒装焊芯片封装微通孔的一种失效机理及其优化方法. 微电子学. 2024(01): 165-170 . 百度学术
    2. 朱桂兵,杨智然,孙蕾. 多场耦合载荷下微焊点的疲劳寿命分析. 微纳电子技术. 2021(12): 1077-1082 . 百度学术
    3. 邹阳,郭波,段学俊,吴庆堂,魏巍,吴焕. 无铅焊点可靠性的研究进展. 焊接. 2021(08): 41-48+64 . 百度学术
    4. 朱桂兵,汪春昌,刘智泉. 热力耦合场下互连微焊点的疲劳寿命分析. 中国测试. 2019(08): 33-37+43 . 百度学术
    5. 邹艳明,李志强. 热冲击条件下边角倒装焊点的失效机理分析. 焊接技术. 2019(11): 33-35 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  779
  • HTML全文浏览量:  2
  • PDF下载量:  252
  • 被引次数: 12
出版历程
  • 收稿日期:  2014-10-21

目录

    /

    返回文章
    返回