高级检索

不同驱动力对熔池表面变形行为影响的数值模拟

黄勇, 李慧, 王新鑫, 姚宇航

黄勇, 李慧, 王新鑫, 姚宇航. 不同驱动力对熔池表面变形行为影响的数值模拟[J]. 焊接学报, 2016, 37(8): 45-49.
引用本文: 黄勇, 李慧, 王新鑫, 姚宇航. 不同驱动力对熔池表面变形行为影响的数值模拟[J]. 焊接学报, 2016, 37(8): 45-49.
HUANG Yong, LI Hui, WANG Xinxin, YAO Yuhang. Numerical simulation of effects of different driving force on surface deformation of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 45-49.
Citation: HUANG Yong, LI Hui, WANG Xinxin, YAO Yuhang. Numerical simulation of effects of different driving force on surface deformation of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 45-49.

不同驱动力对熔池表面变形行为影响的数值模拟

基金项目: 国家自然科学基金资助项目(51265029)

Numerical simulation of effects of different driving force on surface deformation of weld pool

  • 摘要: 基于流体动力学方程,采用焓-孔隙度法来处理液-固相变,采用VOF方法追踪熔池自由表面变形,建立了固定电弧下的三维瞬态TIG焊熔池数学模型,求解获得了在浮力、Marangoni力、电磁力和电弧压力单独作用时的熔池表面变形行为及其温度场与速度场的分布.模拟结果表明,在大电流(I≥250 A)时,在浮力、表面张力温度系数为正时的Marangoni力、电磁力单独作用于熔池上表面将会产生凸起变形,在电弧压力、表面张力温度系数为负时的Marangoni力单独作用下,熔池上表面将会产生凹陷变形.在大电流下,TIG焊和活性TIG焊熔池均产生凹陷变形.TIG焊熔池的中心区域形成向内的涡流,边缘部位形成向外的涡流,而活性TIG熔池在熔池中心和熔池边缘则分别形成两种成因不同的内向涡流.熔池表面变形量并不是各个驱动力作用的简单叠加.
    Abstract: A three-dimensional transient mathematical model of weld pool for a stationary tungsten inert gas welding was established based on the fluid dynamic equations. In this model, enthalpy-porosity method was used to handle liquid-solid phase change, VOF method was employed to track the free surface deformation of the weld pool. By solving these equations, the deformation behavior of surface and the distributions of temperature and velocity were obtained under the independent action by buoyancy, Marangoni force, electromagnetic force and arc pressure, respectively. The results indicate that,at high welding current (I≥250 A), a surface projection forms in weld pool when buoyancy, Marangoni force with positive temperature coefficient of surface tension and electromagnetic force were acted independently, while a surface depression formsunder the action of arc pressure, Marangoni force with negative temperature coefficient of surface tension. At high welding current, weld pool depression phenomenon appears for both TIG welding and activated flux TIG welding. For TIG welding, there exists an inward vortex in the central zone of the weld pool, while a outward vortex appears in the periphery.For activated flux TIG welding, two inward vortexes are induced by different factors in the central zone and periphery of the weld pool,respectively. The magnitude of surface deformation was not superimposed simply by each driving force.
  • [1] Oreper G M, Szekely. Heat and fluid flow phenomena in weld pools[J]. Journal of Fluid Mechanics, 1984, 147(10):53-79.
    [2] Zacharia T, David S A, Vitek J M, et al. Computational modeling stationary gas-tungsten-arc weld pools and comparison to stainless steel-304 experimental results[J]. Metallurgical Transactions B-Process Metallurgy, 1991, 22(2):243-257.
    [3] Choo R T C, Szekely J, David S A. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part Ⅱ-modeling the weld pool and comparison with experiments[J]. Metallurgical Transactions B-Process Metallurgy, 1992, 23(3):371-378.
    [4] 陆善平, 董文超, 李殿忠, 等. 电弧特性及其对熔池形貌影响的数值模拟[J]. 物理学报, 2009, 58:S94-S103. Lu Shanping, Dong Wenchao, Li Dianzhong, et al. Numerical simulationof arcproperties and their effects on the weld shape[J]. Acta Physica Sinica, 2009, 58(Z1):S94-S103.
    [5] Tanaka M, Terasaki H, Ushi M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical & Materials Transactions A, 2001, 33(7):2043-2052.
    [6] Wang X X, Fan D, Huang J K, et al. A unified model of coupled are plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D:Applied Physics, 2014, 47(27):275202(14).
    [7] Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface[J]. Welding Journal, 1990, 69(9):346s-361s.
    [8] 雷永平, 顾向华, 史耀武, 等. GTA焊接电弧与熔池系统的双向耦合数值模拟[J]. 金属学报, 2001, 37(5):537-542 Lei Yongping, Gu Xianghua, Shi Yaowu, et al. Numerical analysis of the two-way interaction between a mutually coupled weld-pool and weld-arc for GTA welding process[J]. Acta Physica Sinica, 2001, 37(5):537-542.
    [9] 黄勇, 刘瑞琳, 樊丁, 等. 气体熔池耦合活性TIG焊方法[J]. 焊接学报, 2012, 33(9):13-16. Huang Yong, Liu Ruilin, Fan Ding, et al. Gas pool coupled activating TIG welding method[J]. Transactions of the China Welding Institution, 2012, 33(9):13-16.
    [10] Voller V R, Prakash C. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat Mass Transfer, 1987, 30(8):1709-1719.
    [11] Hirt C W, Nichols B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
    [12] Kothe D B, Mjolsness R C. A new model for incompressible flows with free surfaces[J]. American Institute of Aeronautics and Astronautics, 1992, 30(11):2694-2700.
    [13] 武传松. 焊接热过程与熔池形态[M]. 北京:机械工业出版社, 2008.
    [14] 叶政钦, 刘启鹏, 李星红, 等. 复杂两相流中界面追踪方法-VOSET的性能分析[J]. 化工学报, 2011, 62(6):1524-1530. Ye Zhengqin, Liu Qipeng, LI Xinghong, et al. Performance analysis of interface tracking method for complex two-phase flows-VOSET[J]. CIESC Journal, 2011, 62(6):1524-1530.
  • 期刊类型引用(5)

    1. 郭鑫鑫,魏正英,张永恒,张帅锋. 电弧增材制造传热传质数值模拟技术综述. 材料导报. 2024(09): 190-196 . 百度学术
    2. 李渊博,郑文星,叶韬,麻帅川,赵锡龙. 钨极惰性气体保护焊熔池流动特性研究方法. 机械工程材料. 2022(04): 12-20 . 百度学术
    3. 周祥曼,王礴允,袁有录,柏兴旺,田启华,付君健,杜义贤. 焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究. 机械工程学报. 2022(10): 103-111 . 百度学术
    4. 许潘,杨泽锋,魏文赋,高国强,吴广宁. 降弓电弧对接触线侵蚀的仿真研究. 高电压技术. 2019(11): 3529-3538 . 百度学术
    5. 张明杰,黄利军,李恒正,孟瑶,李雪飞. 基于有限元仿真的钛合金翼形件锻造过程. 锻压技术. 2016(11): 32-38 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  318
  • HTML全文浏览量:  3
  • PDF下载量:  163
  • 被引次数: 17
出版历程
  • 收稿日期:  2014-09-10

目录

    /

    返回文章
    返回