氩弧焊修复激光成形TC11钛合金组织及高周疲劳性能
Microstructure and high-cycle fatigue properties of laser melting deposited TC11 titanium alloy repaired by tungsten argon arc welding
-
摘要: 采用氩弧焊对沉积态激光成形TC11钛合金进行修复并进行双重退火热处理.观察分析了修复试样热处理前后各区域的组织,测试了高周疲劳极限并进行分析.结果表明,修复区宏观组织呈柱状晶形貌,热影响区和基材区呈柱状晶和等轴晶交替排列形貌.热处理前修复区和热影响区为超细针状α相分布在β相基体中,基材区为较细的网篮组织;热处理后各区域的微观组织均为板条状初生α相+β相转变组织,修复区初生α相长度显著大于其它区域.修复件高周疲劳极限下降约7.1%.断口分析表明:修复件疲劳源均为修复区气孔,气孔缺陷是疲劳性能下降的主要原因;疲劳源区呈α相解理、β相撕裂形貌.Abstract: Tungsten argon arc welding was used to repair a TC11 plate fabricated by laser melting deposition. Duplex-annealing of the repaired sample was provided. Microstructure and high-cycle fatigue properties of the repaired sample were investigated. The results indicated that the repaired zone shows morphology of columnar grains, both heat affected zone and base metal show alternatel yarranged morphology of columnar grains and equiaxed grains. Before heat treatment, the repaired zone and heat affected zone show finen eedle α(hcp) distributed in the β(bcc) matrix, while base metal shows fine basket-weave microstructure. After heat treatment, all zones show microstructure with primary α and transformed β. The primary α phase laths in repaired zone were longer compared with those in other zones. Fatigue properties of the repaired samples were 7.1% lower than that of the base metal. Fracture analysis of the high cycle fatigue specimens shows that all fatigue sources are porosity in repaired zone. Crack initiation zone is characterized by the crystallographic cleavage facets of α lamellae and tearing of β lamellae.
-
Keywords:
- argon-arc welding /
- repair /
- laser melting deposition /
- microstructure /
- high-cycle fatigue
-
-
[1] 中国材料工程大典. 第四卷. 有色金属材料工程(上)黄伯云等主编[M]. 北京:化学工业出版社, 2005. [2] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J]. 中国激光, 2009(12):3204-3209. Wang Huaming, Zhang Shuquan, Wang Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components(Invited Paper)[J]. Chinese Journal of lasers, 2009(12):3204-3209. [3] 薛蕾, 陈静, 张凤英, 等. 飞机用钛合金零件的激光快速修复[J]. 稀有金属材料与工程, 2007, 35(11):1817-1821. Xue Lei, Chen Jing, Zhang Fengying, et al. Laser rapid repair of the aircraft components of titanium alloys[J]. Rare metal materials and engineering, 2006, 35(11):1817. [4] 杨洗陈, 李会山, 刘运武, 等. 激光再制造技术及其工业应用[J]. 中国表面工程, 2003, 16(4):43-46. Yang Xichen, Li Huishan, Liu Yunwu, et al. Laser remanufacturing technology[J]. 2003, 6(4):43-46. [5] Filip R, Kubiak K, Ziaja W. The effect of microstructure on the mechanical properties of two-phase titanium[J]. J Mater Process Tcehnol, 2003, 133:84-89. [6] 贺瑞军, 王华明. 激光熔化沉积Ti-6A1-2Zr-Mo-V合金高周疲劳变形行为[J]. 稀有金属材料与工程, 2010(2):288-291. He Ruijun, Wang Huaming. Deformation behavior in high-Frequency fatigue failure of laser melting depositedTi-6Al-2Zr-Mo-V alloys[J]. Rare Metal Materials and Engineering, 2010(2):288-291. [7] Welsch G, Weiss I, Eylon D, et al. In:Weiss I, Srinivasan R, Bania P J eds. Advances in the science and technology of titanium alloy processing[C]//Warrendale, PA:Minerals, Metals and Materials Society, 1997:169.
计量
- 文章访问数: 367
- HTML全文浏览量: 16
- PDF下载量: 153