基于响应面法的Inconel625镍基合金GTAW堆焊工艺优化
Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology
-
摘要: 堆焊层稀释率和厚度是影响电弧堆焊质量的重要因素,它们是由各焊接参数相互影响综合作用决定的。文中通过中心复合设计试验方案,基于响应面法建立了Inconel625镍基合金GTAW堆焊参数(焊接电流、焊接速度、送丝速度)与响应值稀释率、堆焊层厚度之间的数学模型,分析了各焊接参数对稀释率和堆焊层厚度的影响,并对堆焊参数进行了优化。结果表明,文中试验条件下送丝速度对堆焊层的厚度有着显著的影响,焊接速度和焊接电流对堆焊层厚度的影响较小;焊接电流对稀释率的影响最大,而焊接速度的影响最小;焊接电流和送丝速度的交互作用对稀释率有着重要的影响。
-
关键词:
- 响应面法 /
- 参数优化 /
- GTAW堆焊 /
- Inconel625镍基合金
Abstract: The quality of cladded products depends on the dilution and reinforcement of the overlay, which are the comprehensive results of cladding parameters. Mathematical models between GTAW cladding parameters of Inconel 625 (including welding current, welding speed and wire feed rate) and the dilution/reinforcement of the overlay were proposed. The models were based on central composite rotatable design, which is a typical design method of response surface methodology (RSM). The effect of process parameters on the dilution and reinforcement were analyzed to optimize the cladding process. Experimental results shows that the wire feed rate has significant effect on the reinforcement while welding current and welding speed have less effect. Welding current has the most significant effect on the dilution while welding speed has the weakest effect. The interaction of welding current and welding speed also have significant effect on the dilution.-
Keywords:
- response surface methodology /
- optimization /
- GTAW cladding /
- Inconel 625
-
-
[1] 沈 琛, 张忠铧, 张春霞. 高酸性腐蚀气田用BG2250-125镍基合金油管开发[J]. 中国工程科学, 2010, 12(10): 35-38. Shen Chen, Zhang Zhonghua, Zhang Chunxia. The development of BG2250-125 Ni-based alloy tubing used in severe sour oil field[J]. Engineering Sciences, 2010, 12(10): 35-38. [2] 李玉龙, 禹业晓. TIG堆焊技术研究进展[J]. 电焊机, 2012, 42(12): 70-76. Li Yulong, Yu Yexiao. Research and development of TIG deposition technology[J]. Electric Welding Machine, 2012, 42(12): 70-76. [3] Kannan T, Yoganandh J. Effect of process parameters on clad bead geometry and its shape relationships of stainless steel claddings deposited by GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(9-12): 1083-1095. [4] 汪仁官. 试验设计与分析[M. 北京: 中国统计出版社, 1998. [5] Banovic S W, DuPont J N, Marder A R. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys[J]. Science and Technology of Welding & Joining, 2002, 7(6): 374-383. [6] Banovic S W, DuPont J N, Marder A R. Dilution control in gas-tungsten-arc welds involving superaustenitic stainless steels and nickel-based alloys[J]. Metallurgical and Materials Transactions B, 2001, 32(6): 1171-1176. -
期刊类型引用(12)
1. 徐成. 高含硫复合阀门堆焊过程中的质量控制. 设备监理. 2024(02): 22-24+32 . 百度学术
2. 郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 . 本站查看
3. 陈根余,程少祥,钟沛新. 基于响应面法的玻璃激光焊接焊缝及气孔研究. 激光技术. 2022(04): 474-480 . 百度学术
4. 孙佳孝,杨可,郭余庆,王军,张伟刚. 膜式水冷壁表面堆焊Inconel625合金成形工艺研究. 电焊机. 2022(07): 93-99 . 百度学术
5. 李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 . 百度学术
6. 郭枭,徐锴,吕晓春,陈佩寅,陈波,霍树斌. 钨极氩弧焊热输入与面积稀释率关系的探讨. 压力容器. 2021(06): 10-14+41 . 百度学术
7. 段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 . 百度学术
8. 刘拥军,郭占英,方海鹏. 基于RSM的GH3128镍基合金MIG堆焊工艺参数优化. 热加工工艺. 2020(15): 114-118 . 百度学术
9. 魏军会,杜文波,张宝,崔佳凯,易俊,康诗琪,李建明,冯春宇. 焊道间隔冷却时间对Inconel 625温度场的影响. 兵器材料科学与工程. 2020(06): 90-94 . 百度学术
10. 徐兵. MIG立向下堆焊Inconel 625焊接工艺研究. 压力容器. 2019(12): 70-74 . 百度学术
11. 田春英,王军,李慕勤,王剑. 耦合电弧热丝GTAW堆焊Inconel 625组织和耐蚀性. 焊接. 2019(11): 20-23+66 . 百度学术
12. 徐茂,刘双宇,李彦清,张宏,刘凤德. 基于响应面法的SPCC与65Mn异种金属激光焊接工艺参数优化. 应用激光. 2017(03): 362-366 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 568
- HTML全文浏览量: 41
- PDF下载量: 280
- 被引次数: 26