高级检索

电弧焊熔透ICA-BP神经网络识别模型

高向东, 林俊, 萧振林, 陈晓辉

高向东, 林俊, 萧振林, 陈晓辉. 电弧焊熔透ICA-BP神经网络识别模型[J]. 焊接学报, 2016, 37(5): 33-36.
引用本文: 高向东, 林俊, 萧振林, 陈晓辉. 电弧焊熔透ICA-BP神经网络识别模型[J]. 焊接学报, 2016, 37(5): 33-36.
GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
Citation: GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.

电弧焊熔透ICA-BP神经网络识别模型

基金项目: 国家自然科学基金资助项目(51175095);广东省协同创新与平台环境建设专项资助项目(2015B090901013);广东省重大科技专项资助项目(2014B090921008);广州市科学研究专项资助项目(1563000554);佛山市科技创新专项资助项目(2014AG10015)

Recognition model of arc welding penetration using ICA-BP neural network

  • 摘要: 以氩弧焊熔透状态识别为研究对象,研究一种基于ICA (Imperialist Competitive Algorithm) 的BP(Back Propagation)神经网络识别模型方法. 首先利用ICA全局搜索不易陷入局部极值及搜索速度快的特点对神经网络权值和阈值初始化,再用BP算法对神经网络进行训练. 通过摄取焊接过程中的熔池图像,提取熔池面积、熔宽以及熔池质心位置作为神经网络预测模型的输入量,分析熔池图像三个特征与焊缝熔透状态的映射关系,最终建立熔透状态预测模型. 结果表明,采用ICA-BP神经网络能够有效地预测焊缝的熔透状态.
    Abstract: A BP neural network model based on ICA (Imperialist Competitive Algorithm) is proposed to recognize the arc welding penetration status. The weights and thresholds of the neural network are initialized using ICA which has the features of uneasy accessibility to local extremum and fast search speed. Then the BP algorithm is used to train the neural network. By capturing the images of the molten pool in welding process, three features of a molten pool image are processed. The features includes the weld pool area, weld pool width and the distance between the weld pool centroid and the bottom. These features are as the inputs of neural network to create the mapping relationship between the three features of molten pool and the weld penetration status, and eventually a predicted model of penetration status is established. Welding experimental results show that the welding penetration status can be accurately recognized using the ICA-BP neural network.
  • [1] 高向东, 江良征, 龙观富. 强弧光反射环境下频域滤波的熔宽特征提取[J]. 焊接学报, 2013, 34(8): 5-8. Gao Xiangdong, Jiang Liangzheng, Long Guanfu. Detection of welding pool width with frequency domain filtering in strong arc reflection environment[J]. Transactions of the China Welding Institution, 2013, 34(8): 5-8.
    [2] 杨友文, 田宗军, 潘 浒, 等. 基于遗传神经网络的镍基高温合金激光熔覆层形貌质量预测[J]. 焊接学报, 2013. 11, 34(11): 78-82. Yang Youwen, Tian Zongjun, Pan Hu, et al. Geometry quality prediction of Ni-based superalloy coating by laser cladding based on neural network and genetic algorithm[J]. Transactions of the China Welding Institution, 2013. 11, 34(11): 78-82.
    [3] 吴松坪, 王春明, 胡伦骥, 等. 激光焊接典型熔透状态信号特征分析及其识别[J]. 焊接学报, 2006.7, 27(7):69-73. Wu Songping, Wang Chunming, Hu Lunji, et al. Characteristic signal analysis and its identification of typical weld penetration status in laser welding[J]. Transactions of the China Welding Institution, 2006.7, 27(7): 69-73.
    [4] Yu H W, Ye Z, Chen S B. Application of arc plasma spectral information in the monitor of Al-Mg alloy pulsed GTAW penetration status based on fuzzy logic system[J]. The International Journal of Advanced Manufacturing Technology, 2013.3(3): 2713-2727.
    [5] Duan H B, Huang L Z. Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning[J]. Neurocomputing, 2014, 125: 166-171.
    [6] Taghavifar H, Mardani A, Taghavifar L. A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility[J]. Measurement, 2013, 46: 2288-2299.
  • 期刊类型引用(5)

    1. 王颖,高胜,吴立明. 基于胶囊网络的TIG熔透预测. 焊接. 2023(04): 15-20+28 . 百度学术
    2. 冯志强,袁浩,刘鹏,向晓宏,曾宪平,黎欣,黎泉. 变间隙MAG焊熔透状态的粗糙-模糊控制方法. 焊接学报. 2023(11): 22-35+130-131 . 本站查看
    3. 金伟,赵红霞,郭于明. 熔透状态识别预测与控制技术研究现状. 中国工程机械学报. 2021(03): 217-221 . 百度学术
    4. 任乐,张爱华,常东东,何倩玉,马晶. 基于电弧声的超窄间隙焊接熔合状态识别. 电焊机. 2021(07): 11-16+23+113-114 . 百度学术
    5. 黄军芬,薛龙,黄继强,邹勇,马可,焦向东. 基于视觉传感的GMAW熔透状态预测. 机械工程学报. 2019(17): 41-47 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  429
  • HTML全文浏览量:  6
  • PDF下载量:  359
  • 被引次数: 12
出版历程
  • 收稿日期:  2014-10-30

目录

    /

    返回文章
    返回