高级检索

基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析

李智钟, 周建平, 许燕, 李丙如

李智钟, 周建平, 许燕, 李丙如. 基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析[J]. 焊接学报, 2016, 37(4): 77-80,94.
引用本文: 李智钟, 周建平, 许燕, 李丙如. 基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析[J]. 焊接学报, 2016, 37(4): 77-80,94.
LI Zhizhong, ZHOU Jianping, XU Yan, LI Bingru. Numerical simulation analysis on T-shaped pipe weldments temperature and stress-strain field based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 77-80,94.
Citation: LI Zhizhong, ZHOU Jianping, XU Yan, LI Bingru. Numerical simulation analysis on T-shaped pipe weldments temperature and stress-strain field based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 77-80,94.

基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析

基金项目: 国家自然科学基金资助项目(51365053);自治区科技支疆资助项目(201491124)

Numerical simulation analysis on T-shaped pipe weldments temperature and stress-strain field based on SYSWELD

  • 摘要: 采用双椭球体热源分布模型,基于Sysweld软件平台,对常用的暖气运输管道中T形管焊接过程进行数值模拟仿真.首先通过UG建立三维模型并导入Hypermesh进行了网格划分,之后在Sysweld中对焊接过程进行模拟仿真,获得了温度场及应力应变场的分布情况.然后对焊接过程温度云图及焊件整体形变进行了详细的分析,结果表明,热源处的温度达到2500℃左右,在焊缝周围形成了明显的热影响区;并在焊缝区域出现应力集中情况,其最大应力为277 MPa,在其材料的屈服应力范围内(345 MPa);且在焊缝处出现下凹现象,最大变形量为0.29 mm.此次分析为实际焊接提供理论依据.
    Abstract: The welding process of frequently-used T-shaped pipe in heating transportation pipeline was numerically simulated. Based on the SYSWELD software platform, the double ellipsoid heat source distribution model was used. Firstly, the three-dimensional model was built by UG and the mesh for the model was divided by hypermesh, then the welding process was simulated by SYSWELD. The distribution of temperature and stress-strain fields were obtained. The temperature contour and the overall deformation of the welding parts in the welding process were analyzed in details. The results show that the temperature of the heat source can reach as high as 2500℃. The heat affected zone is obviously formed around the weld. Stress concentration appears in the weld area. The maximum stress is 277 MPa, which is within the material's yield stress that is 345 MPa. The phenomenon of concave is appeared in the weld. The maximum deformation is 0.29 mm. The analysis provides a theoretical basis for the actual welding.
  • [1] 方洪渊. 焊接结构学[M]. 北京:机械工业出版社, 2013.
    [2] 王运炎, 朱莉. 机械工程材料[M]. 北京:机械工业出版社, 2012.
    [3] 高军义, 周建平, 吴金强, 等. T形焊接接头温度场及力场的三维数值模拟[J]. 机械设计与制造, 2012(11):13-15. Gao Junyi, Zhou Jianping, Wu Jinqiang, et al. There-dimensional dynamic FEM simulation and dtructural optimum of T-joint[J]. Machinery Design & Manufacture, 2012(11):13-15.
    [4] 李金阁. Q345/2Cr13钢异种材料焊接过程有限元分析[D]. 重庆:重庆大学, 2012.
    [5] Bilenko G A. Study of the structure and mechanical properties of a weld in a heat exchanger by computer modeling[J]. Metallurgist, 2013, 57:573-578.
    [6] 黎超文, 王勇, 李立英, 等. T形接头的焊接温度场三维动态有限元模拟[J]. 焊接学报, 2011, 32(8):33-36. Li Chaowen, Wang Yong, Li Liying, et al. Three dimensional dynamic finite element simulation of welding temperature field of T shaped joint[J]. Transactions of the China Welding Institution, 2011, 32(8):33-36.
    [7] 董克权, 刘超英, 陈英俊. 双椭球热源模型加载算法研究[J]. 机械设计与制造, 2008(11):60-62. Dong Kequan, Liu Chaoying, Chen Yingjun. Research on the loading algorithm of double ellipsoid heat source model[J]. Machinery Design & Manufacture, 2008(11):60-62.
    [8] Chen Yuhua, Wang Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. Transactions of the China Welding Institution, 2007, 28(1):85-88.
    [9] 欧先印. 基于SYSWELD TIG焊数值模拟[D]. 南昌:南昌航空大学, 2012.
    [10] Syahroni N, Hidayat M I P. Numerical simulation of welding sequence effect on temperature distribution, residual stresses and distortions of T-joint fillet welds[J]. Advanced Materials Research, 2011, 264-265:254-259.
    [11] 沈松泉, 黄振仁, 顾竟成. 压力管道安全技术[M]. 南京:东南大学出版社, 2001.
计量
  • 文章访问数:  528
  • HTML全文浏览量:  22
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-07

目录

    /

    返回文章
    返回