高级检索

基于BP神经网络和遗传算法的大功率脉冲电源优化设计

周建平, 许燕, 操窘, 尹贻梁, 许以浩

周建平, 许燕, 操窘, 尹贻梁, 许以浩. 基于BP神经网络和遗传算法的大功率脉冲电源优化设计[J]. 焊接学报, 2016, 37(4): 9-13.
引用本文: 周建平, 许燕, 操窘, 尹贻梁, 许以浩. 基于BP神经网络和遗传算法的大功率脉冲电源优化设计[J]. 焊接学报, 2016, 37(4): 9-13.
ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
Citation: ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.

基于BP神经网络和遗传算法的大功率脉冲电源优化设计

基金项目: 国家自然科学基金资助项目(51365053)

High power supply optimization design based on BP neural network and genetic algorithm

  • 摘要: 短电弧脉冲电源的性能指标对短电弧加工工件工艺性有着十分重要的影响.文中通过建立脉冲电源的Matlab仿真模型,利用模型仿真数据对电源神经网络模型进行训练,结合基于目标加权法的遗传算法对电源参数进行优化,指导短电弧样机电源参数的修改,并进行了启动性试验和负载突变试验.结果表明,采用BP-GA算法优化的短电弧电源不仅可以减少了系统调试时间、节约调试和试验成本,并且具有输出电压平稳,受外界干扰小,响应速度快等优点.
    Abstract: Precision and machining efficiency are the unity of opposites, and ultimately depends on the performance indicators of pulse power supply in short electric arc machining (SEAM). In the article, power supply's neural network model using Matlab simulation data on this basis, the power supply parameters are optimized by combing with genetic algorithm based on objective weighting method to guide the power parameter changes to meet the requirements. Then, test results of simulation and tests, results show that the power supply designed by this optimization method have the advantages of stable output voltage and fast response speed, which meet the expectant targets and test requirements.
  • [1] Zhou J P, Liang C H, Teng W J. Study on rules in material removal rate and surface quality of short electric arc machining process[J]. Advanced Materials Research, 2008, 33(5):1313-1318.
    [2] 陈文洁, 杨旭, 杨拴科, 等. 分立元件构成的电力电子集成功率模块的设计[J]. 中国电机工程学报, 2003, 23(12):104-110. Chen Wenjie, Yang Xu, Yang Shuanke, et al. A design of discrete components based integrated power modules[J]. Proceedings of the CSEE, 2003, 23(12):104-110.
    [3] 裴雪军, 康勇, 熊健, 等. PWM逆变器共模传导电磁干扰的预测[J]. 中国电机工程学报, 2004, 24(8):83-88. Pei Xuejun, Kang Yong, Xiong Jian, et al. Prediction of common mode conducted EMI in PWM inverter[J]. Proceedings of the CSEE, 2004, 24(8):83-88.
    [4] 孙宇新. Matlab仿真实验在电气专业教学中的应用[J]. 实验技术与管理, 2002, 19(2):96-98. Sun Yuxin. The application of Matlab simulation experiment in electrical professional teaching[J]. Experimental Technology and Management, 2002, 19(2):96-98.
    [5] 张加胜, 张磊. 四象限变流器的一种统一性建模及分析方法研究[J]. 中国电机工程学报, 2004, 24(8):39-44. Zhang Jiasheng, Zhang Lei. Research on an general unified modeling and analysis approach of 4-quadrant converters[J]. Proceedings of the CSEE, 2004, 24(8):39-44.
    [6] 段彬, 张承慧, 孙同景, 等. 脉冲逆变焊接电源建模与仿真[J]. 焊接学报, 2012, 33(4):57-60. Duan Bin, Zhang Chenghui, Sun Tongjing, et al. Modeling and simulation of pulsed welding inverter[J]. Transactions of the China Welding Institution, 2012, 33(4):57-60.
    [7] 段彬, 张承慧, 孙同景, 等. 全数字智能脉冲弧焊电源系统设计与实现[J]. 焊接学报, 2012, 33(8):105-108. Duan Bin, Zhang Chenghui, Sun Tongjing, et al. Design and realization of fully digital intelligent pulse arc welding power source[J]. Transactions of the China Welding Institution, 2012, 33(8):105-108.
    [8] 王瑞超, 薛家祥. 软开关弧焊逆变电源动特性分析[J]. 焊接学报, 2012, 33(10):17-20. Wang Ruichao, Xue Jiaxiang. Analysis for dynamic characteristics of soft-switch arc welding inverter[J]. Transactions of the China Welding Institution, 2012, 33(10):17-20.
    [9] 周昊, 朱洪波, 茅建波, 等. 大型四角切圆燃烧锅炉NOx排放特性的神经网络模型[J]. 中国电机工程学报, 2002, 22(1):34-37. Zhou Hao, Zhu Hongbo, Mao Jianbo, et al. An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler[J]. Proceedings of the CSEE, 2002, 22(1):34-37.
    [10] Reid D J. Genetic algorithms in constrained optimization[J]. Mathematical and Computer Modelling, 2006, 23(5):87.
  • 期刊类型引用(6)

    1. 杨天雨,张鹏林,尹燕,刘文朝,张瑞华. 激光选区熔化组织分析及人工神经网络力学性能预测. 焊接学报. 2019(06): 100-106+165-166 . 本站查看
    2. 高泽明,陈大军,程伦,杨磊. 基于时序特性的城市电动汽车电源性能优化研究. 环境技术. 2019(05): 149-153 . 百度学术
    3. 吴鑫,李强,齐铂金. Snake模型和遗传算法在特殊焊缝提取中的应用. 焊接学报. 2018(09): 83-89+132 . 本站查看
    4. 马思群,刘选,金辉,冯良波,聂春戈,刘寒. BP及RBF神经网络铝合金车体焊接残余应力预测. 大连交通大学学报. 2018(06): 30-34 . 百度学术
    5. 许以浩,周建平,许燕,周宗杰. 基于双闭环PI控制的短电弧加工脉冲电源设计. 新疆大学学报(自然科学版). 2017(02): 242-247 . 百度学术
    6. 于德亮,李妍美,丁宝,任玉龙,齐维贵. 基于思维进化算法和BP神经网络的电动潜油柱塞泵故障诊断方法. 信息与控制. 2017(06): 698-705 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  580
  • HTML全文浏览量:  29
  • PDF下载量:  426
  • 被引次数: 11
出版历程
  • 收稿日期:  2014-07-06

目录

    /

    返回文章
    返回