高级检索

以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬间液相扩散连接

任海水, 熊华平, 陈波, 逄淑杰, 叶雷

任海水, 熊华平, 陈波, 逄淑杰, 叶雷. 以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬间液相扩散连接[J]. 焊接学报, 2016, 37(3): 106-110.
引用本文: 任海水, 熊华平, 陈波, 逄淑杰, 叶雷. 以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬间液相扩散连接[J]. 焊接学报, 2016, 37(3): 106-110.
REN Haishui, XIONG Huaping, CHEN Bo, PANG Shujie, YE Lei. Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 106-110.
Citation: REN Haishui, XIONG Huaping, CHEN Bo, PANG Shujie, YE Lei. Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 106-110.

以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬间液相扩散连接

Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer

  • 摘要: 采用瞬间液相扩散焊方法,以自主设计的Ti-Zr-Cu-Ni-Fe系新型合金作为中间层,实现了Ti3Al基合金与TiAl异种材料之间的连接.利用扫描电镜、电子探针以及X射线衍射分析等方法对接头界面微观组织和物相进行了分析.结果表明,Ti3Al/TiAl接头主要由富Ti相、Ti2Al反应层、α2-Ti3Al相以及溶入了Al元素的残余中间层组成;随着焊接温度的升高,中间层与母材的溶解与扩散变得更加强烈,使得Ti2Al反应层厚度增加,残余中间层的数量减少.抗剪测试结果显示,焊接接温度在880~1010℃范围内时,提高焊接温度有利于接头强度的提高;接头在室温下的最大抗剪强度达到502 MPa,在500℃下为196 MPa.
    Abstract: Transient liquid phase diffusion bonding of Ti3Al-based alloy to TiAl intermetallic was conducted and a newly designed Ti-Zr-Cu-Ni-Fe alloy was used as interlayer. The joint microstructure was examined using a scanning electron microscope (SEM) equipped with an electron probe micro-analyzer (EPMA), the phase constitution was identified using an X-ray diffraction (XRD) spectrometer detected on the fractured surface. The results show that the Ti3Al/TiAl joint mainly consists of Ti-rich phase, Ti2Al layer, α2-Ti3Al phase and residual Al dissolved interlayer alloy dissolved with Al. The dissolution and inter-diffusion between base metal and interlayer become stronger with the increase of the bonding temperature. And meantime the Ti2Al is thickened and the amount of residual interlayer at the central part of the joint is decreased. The shear test results indicate that in the range of 880~1010℃ the increase of bonding temperature is beneficial to the joint strength. The maximum shear strength of Ti3Al/TiAl joint reached 502 MPa at room temperature and the shear strength was maintained at 196 MPa in 500℃.
  • [1] Lasalmonie A. Intermetallics:why is it so difficult to introduce them in gas turbine engines[J]. Intermetallics, 2006, 14:1123-1129.
    [2] Ramos A S, Vieira M T, Vieira M F, et al. Joining of gamma-based titanium aluminides-a review[J]. Materials Science Forum, 2006, 514-516:483-489.
    [3] Wu A P, Zou G S, Ren J L, et al. Microstructures and mechanical properties of Ti-24Al-17Nb(at.%)laser beam welding joints[J]. Intermetallics, 2002, 10:647-652.
    [4] 何景山, 张秉刚, 吴庆生, 等. 焊后热处理对Ti3Al电子束焊缝组织形体的影响[J]. 焊接学报, 2007, 28:57-60. He Jingshan, Zhang Binggang, Wu Qingshe, et al. Effect of postweld heat treatment on microstructure of electron beam welded joints of Ti3Al[J]. Transactions of the China Welding Institution, 2007, 28:57-60.
    [5] Cadden C H, Yang N Y C, Headley T H. Microstructural evolution and mechanical properties of braze joints in Ti-13.4Al-21.2Nb[J]. Welding Journal, 1997, 76:316-325.
    [6] He P, Feng J C, Zhou H. Microstructure and strength of brazed joints of Ti3Al-base alloy with TiZrNiCu filler metal[J]. Materials Science and Engineering A, 2005, 392:81-86.
    [7] 陈波, 熊华平, 毛唯, 等. 采用Ti-Zr-Cu-Ni真空钎焊Ti3Al/Ti3Al和Ti3Al/GH536接头组织及性能[J]. 航空材料学报, 2010, 30:35-38. Chen Bo, Xiong Huaping, Mao Wei, et al. Microstructures and properties of Ti3Al/Ti3Al and Ti3Al/GH536 joints using Ti-Zr-Cu-Ni brazing filler[J]. Journal of Aerospace Materials, 2010, 30:35-8.
    [8] Zou J Y, Cui Y Y, Yang R. Diffusion bonding of dissimilar intermetallic alloys based on Ti2AlNb and TiAl[J]. Journal of Materials Science and Technology, 2009, 25(6):819-824.
    [9] 谷晓燕, 孙大千, 任振安, 等. Ti3Al基合金瞬间液相扩散连接接头组织与力学性能[J]. 焊接学报, 2010, 31:45-48. Gu Xiaoyan, Sun Daqian, Ren Zhenan, et al. Microstructure and mechanical properties of transient liquid phase bonded Ti3Al based alloy joints[J]. Transactions of the China Welding Institution, 2010, 31:45-48.
    [10] 静永娟, 李晓红, 侯金保, 等. Ti3Al基合金TLP扩散连接界面的组织演变[J]. 焊接学报, 2010, 34:71-84. Jing Yongjuan, Li Xiaohong, Hou Jinbao, et al. Microstructure evolution of TLP bonding interface for Ti3Al based alloy[J]. Transactions of the China Welding Institution, 2013, 34:71-74.
    [11] Yang S J, Nam S W. Investigation of α2 phase transformation mechanism under the interaction of dislocation with lamellar interface in primary creep of lamellar TiAl alloys[J]. Materials Science and Engineering A, 2002, 329-331:898-905.
    [12] Cao G H, Skrotzki W, Gemming T. Transmission electron microscopy investigation of Ti2Al precipitation in titanium aluminides during high-strain torsion[J]. Journal of Alloys and Compounds, 2006, 417:169-172.
    [13] Xiong H P, Shen Q, Li J G, et al. Design and microstructures of Ti/TiAl/Al system functionally graded material[J]. Journal of Materials Science Letters, 2000, 19:989-993.
    [14] Lee S J, Wu S K. Infrared joining strength and interfacial microstructures of Ti-48Al-2Nb-2Cr intermetallics using Ti-15Cu-15Ni foil[J]. Intermetallics, 1999, 7:11-21.
    [15] Shiue R K, Wu S K, Chen Y T, et al. Infrared brazing of Ti50Al50 and Ti-6Al-4V using two Ti-based filler metals[J]. Intermetallics, 2008, 16:1083-1089.
    [16] Lee S J, Wu S K, Lin R Y. Infrared joining of TiAl intermetallics using Ti-15Cu-15Ni foil-II:the microstructural evolution at high temperature[J]. Acta Materialia, 1998, 46:1297-1305.
计量
  • 文章访问数:  411
  • HTML全文浏览量:  17
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-28

目录

    /

    返回文章
    返回