高级检索

脉冲MIG焊积分参数在线自适应控制算法

陈辉, 薛家祥, 恒功淳, 王磊磊

陈辉, 薛家祥, 恒功淳, 王磊磊. 脉冲MIG焊积分参数在线自适应控制算法[J]. 焊接学报, 2016, 37(3): 97-100.
引用本文: 陈辉, 薛家祥, 恒功淳, 王磊磊. 脉冲MIG焊积分参数在线自适应控制算法[J]. 焊接学报, 2016, 37(3): 97-100.
CHEN Hui, XUE Jiaxiang, HENG Gongchun, WANG Leilei. Integral parameter self-adjustment control algorithm in pulsed MIG welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 97-100.
Citation: CHEN Hui, XUE Jiaxiang, HENG Gongchun, WANG Leilei. Integral parameter self-adjustment control algorithm in pulsed MIG welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 97-100.

脉冲MIG焊积分参数在线自适应控制算法

基金项目: 广东省省部产学研项目(2013B090600098);黄埔区科技计划资助项目(201341);广东工业大学青年基金(14ZK0008)

Integral parameter self-adjustment control algorithm in pulsed MIG welding power source

  • 摘要: 针对传统的数字PI控制对MIG焊接过程中参数变化适应能力不强,提出了一种积分参数在线自适应控制算法.控制算法可通过对控制量实时检测,能够快速、自动调整获得优化后的积分参数.根据控制算法,结合焊接电流上升沿与下降沿的固有最小时间,将积分参数分为上升沿积分参数、下降沿积分参数,在焊接设备上设计并实现了积分参数自适应控制器.结果表明,利用该算法及控制器对不同积分参数初始值均能快速搜索到适应值,实现稳定焊接.
    Abstract: Due to the fact that the parameter variety adaptability to MIG welding process was not sufficient in conventional digital PI control, an algorithm of adaptive control of on-line integral parameters was proposed. The control algorithm could obtain optimized integral parameters quickly and automatically by real-time detecting control quantity. Based on the control algorithmand the inherent minimum times of the rising edge and falling edge of the welding current, integral parameters can be divided into rising edge parameter and falling edge parameter. The adaptive controller for integral parameter was designed and implemented inside the welding equipment. The result indicated that using this algorithm and controller different initial values of integral parameters could be quickly searched for the adaptive value and a stable welding process can be achieved.
  • [1] 王星云, 王平, 李国锋, 等. 弧焊电源的现状与展望[J]. 电焊机, 2009, 39(7):66-68. Wang Xingyun, Wang Ping, Li Guofeng, et al. Present situation and forecast of arc welding power source[J]. Electric Welding Machine, 2009, 39(7):66-68.
    [2] 秦禹, 卫进. 基于PID-模糊控制梯子梁焊接电路的仿真[J]. 制造业自动化, 2014(20):109-112. Qin Yu, Wei Jin. Ladder beam welding circuit simulation based on the PID and fuzzy control[J]. Manufacturing Automation, 2014, 36(10):109-112.
    [3] 庞清乐, 王永强. 基于模糊和PI控制的MIG焊接电源设计[J]. 控制工程, 2012, 19(3):507-510, 534. Pang Qingle, Wang Yongqiang. Design of fuzzy and PI control based MIG welding power source[J]. Control Engineering of China, 2012, 19(3):507-510, 534.
    [4] 徐丽钟, 唐培林, 沈湜. 基于自动化控制的熔化极惰性气体保护焊焊接电源设计及实验测试[J]. 电焊机, 2014, 44(12):55-59. Xu Lizhong, Tang Peilin, Shen Shi. Design and experimental test of metal inertia gas shielded welding power source based on automatic control[J]. Electric Welding Machine, 2014, 44(12):55-59.
    [5] Aktepe Adnan, Ersoz Suleyman, Luy Murat. Welding process optimization with artificial neural network applications[J]. Neutral network world, 2014, 24(6):655-670.
    [6] Duan Bin, Zhang Chenghui, Zhang Guangxian. Adaptive control strategy of the welding current[J]. China Welding, 2014(2):57-61.
    [7] Yao Ping, Xue Jiaxiang, Zhong Liangwen, et al. Intelligent process expert database of double pulse MIG welding of Al-Si alloy[J]. China Welding, 2012, 21(1):59-63.
    [8] 杨建, 潘厚宏, 王克军. 弧焊电源焊接参数预置系统的发展[J]. 电焊机, 2010, 40(9):1-4. Yang Jian, Pan Houhong, Wang Kejun. Development of arc welding power supply with presetting parameters system[J]. Electric Welding Machine, 2010, 40(9):1-4.
  • 期刊类型引用(0)

    其他类型引用(5)

计量
  • 文章访问数:  503
  • HTML全文浏览量:  6
  • PDF下载量:  366
  • 被引次数: 5
出版历程
  • 收稿日期:  2015-11-19

目录

    /

    返回文章
    返回