高级检索

激光拼焊板HAZ力学性能的预测及有限元分析

夏卫生, 刘奋, 韦春华, 吴丰顺, 杨云珍

夏卫生, 刘奋, 韦春华, 吴丰顺, 杨云珍. 激光拼焊板HAZ力学性能的预测及有限元分析[J]. 焊接学报, 2016, 37(3): 79-82.
引用本文: 夏卫生, 刘奋, 韦春华, 吴丰顺, 杨云珍. 激光拼焊板HAZ力学性能的预测及有限元分析[J]. 焊接学报, 2016, 37(3): 79-82.
XIA Weisheng, LIU Fen, WEI Chunhua, WU Fengshun, YANG Yunzhen. Prediction and finite element analysis of the mechanical properties of heat affected zone of laser welded blanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 79-82.
Citation: XIA Weisheng, LIU Fen, WEI Chunhua, WU Fengshun, YANG Yunzhen. Prediction and finite element analysis of the mechanical properties of heat affected zone of laser welded blanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 79-82.

激光拼焊板HAZ力学性能的预测及有限元分析

Prediction and finite element analysis of the mechanical properties of heat affected zone of laser welded blanks

  • 摘要: 提出采用加权平均方法描述激光拼焊板热影响区(Heat affected zone,HAZ)与母材、焊缝的性能关系,通过单向拉伸试验获得母材和焊缝的力学性能,据此建立热影响区性能参数的计算模型,并采用ABAQUS有限元软件进行仿真分析.结果表明,采用模拟与试验结果的对比确定了合理的权重系数,同时验证了所求热影响区性能的有效性.作为对比,采用混合法则方法求得热影响区性能,并与加权平均方法的模拟结果进行比较,发现采用加权平均法的模拟结果与试验结果的差别更小,更接近于试验结果.
    Abstract: The weighted average method is proposed to describethe relationship between the heat affected zone (HAZ) of laser tailor-welded blanks, the base metal and the weld.Based on the uniaxial tensile test, the mechanical properties of the base material and the weld were obtained. The prediction model is developed to determine the performance of the HAZ by ABAQUS software. By comparing the simulation results and the test, a reasonable weighting coefficient is determined, and the FEA model reliability is also proved.In addition, the performance of the HAZis also obtained by the mixing rule method, which is compared with the results by the weighted average method. There are only litter difference between the prediction results and the experiment. The prediction results by the weighted average method are closer to the test.
  • [1] Merklein M, Johannes M, Lechner M, et al. A review on tailored blanks-production, applications and evaluation[J]. Journal of Materials Processing Technology, 2014, 214(2):151-164.
    [2] Gaied S, Roelandt J M, Pinard F, et al. Experimental and numerical assessment of tailor-welded blanks formability[J]. Journal of Materials Processing Technology, 2009, 209(1):387-395.
    [3] Sreenivasan N, Xia M, Lawson S, et al. Effect of laser welding on formability of DP980 steel[J]. Journal of Engineering Materials and Technology, 2008, 130(4):1-9.
    [4] Xia M S, Kuntz M L, Tian Z L, et al. Failure study on laserwelds of dual phase steel in formability testing[J]. Science and Technology of Welding and Joining, 2008, 13(4):378-387.
    [5] Song Y, Hua L, Chu D, et al. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture[J]. Materials & Design, 2012, 37:19-27.
    [6] Sun G, Xu F, Li G, et al. Determination of mechanical properties of the weld line by combining micro-indentation with inverse modeling[J]. Computational Materials Science, 2014, 85:347-362.
    [7] 陈水生, 林建平. 基于DIC的拼焊板焊缝性能识别方法及验证[J]. 焊接学报, 2013, 34(8):76-80. Chen Shuisheng, Lin Jianping. A novel method for measuring the weld property of tailor welded blanks based on DIC[J]. Transactions of the China Welding Institution, 2013, 34(8):76-80.
    [8] Abdullah K, Wild P M, Jeswiet J J, et al. Tensile testing for weld deformation properties in similar gage tailor welded blanks using the rule of mixtures[J]. Journal of Materials Processing Technology, 2001, 112(1):91-97.
    [9] Hollomon J H. Tensile deformation[J]. Transactions of the Metallurgical Society of AIME, 1945, 12(4):1-22.
  • 期刊类型引用(2)

    1. 张群莉,靳威威,屠夏琦,陈智君,薛华军,吴许祥,倪振兴,王成. 基于改进粒子群算法神经网络的SS304不锈钢激光拼焊焊缝成形预测. 锻压装备与制造技术. 2021(02): 106-110 . 百度学术
    2. 邹媛媛,左克铸,房灵申,李鹏飞. 基于最小二乘支持向量机的激光拼焊焊缝识别. 焊接学报. 2019(02): 77-81+164 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  506
  • HTML全文浏览量:  6
  • PDF下载量:  238
  • 被引次数: 3
出版历程
  • 收稿日期:  2014-06-15

目录

    /

    返回文章
    返回