高级检索

不锈钢水下等离子湿法焊接工艺分析

苗玉刚, 张本顺, 陈广宇, 韩端锋

苗玉刚, 张本顺, 陈广宇, 韩端锋. 不锈钢水下等离子湿法焊接工艺分析[J]. 焊接学报, 2016, 37(3): 49-52.
引用本文: 苗玉刚, 张本顺, 陈广宇, 韩端锋. 不锈钢水下等离子湿法焊接工艺分析[J]. 焊接学报, 2016, 37(3): 49-52.
MIAO Yugang, ZHANG Benshun, CHEN Guangyu, HAN Duanfeng. Process analysis of underwater plasma welding on stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 49-52.
Citation: MIAO Yugang, ZHANG Benshun, CHEN Guangyu, HAN Duanfeng. Process analysis of underwater plasma welding on stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 49-52.

不锈钢水下等离子湿法焊接工艺分析

基金项目: 国家自然科学基金资助项目(51005049);哈尔滨市高新技术产业专项资金资助项目(ZX2012ZC006015)

Process analysis of underwater plasma welding on stainless steel

  • 摘要: 试验采用5 mm的304不锈钢板材,利用等离子电弧进行水下湿法焊接工艺试验.通过观察焊缝外观形貌和金相显微镜宏观组织,并借助超景深光学显微镜,评价了接头界面微观组织特征,最后通过拉伸试验对焊接接头的力学性能进行了测试.结果表明,水下等离子湿法焊接可以获得稳定电弧和优质焊缝,满足焊接性能要求.焊缝晶粒以均匀但略微粗化的平行树枝状晶为主,其间存在有较为致密、均匀的树枝状等轴晶.焊缝抗拉强度达到母材的77.56%.断口形态为典型的韧性断裂,但其表面存在的气孔,影响了焊缝力学性能.
    Abstract: The plasma underwater welding technology (PUW)was proposed and the welding process test was carried out on 304 stainless steel with a thickness of 5 mm. The optical microscopy, the super depth of field optical microscopy, tensile testing machine were applied to observe and to analyze the joint morphology as well as the mechanical properties. The results show that PUW can obtain stable arc and high-quality weld. The microstructure of weld metal mainly consisted of homogeneously distributed slightly coarsened dendritic crystal, some regions existed dense and uniform equiaxial dendritic crystal. The tensile strength of welded joints was about 77.56%. The fractured surface morphology presented typical ductile fracture. But the pores present on the weld surfaceaffect the mechanical properties of the weld.
  • [1] Rowe M, Liu S. Recent developments in underwater wet welding[J]. Science and Technology of Welding Joining, 2001, 6(6):387-396.
    [2] 石永华, 郑泽培, 黄晋. 水下湿法药芯焊丝焊接电弧稳定[J]. 焊接学报, 2012, 33(10):49-53. Shi Yonghua, Zheng Zepei, Huang Jin. Arc stability of underwater wet flux-cored arc welding[J]. Transactions of the China Welding Institution, 2012, 33(10):49-53.
    [3] 胡家昆, 武传松, 贾传宝. 水下湿法焊条电弧焊接过程稳定性评价[J]. 焊接学报, 2013, 34(5):99-102. Hu Jiakun, Wu Chuansong, Jia Chuanbao. Welding process stability evaluation of underwater wet manual metal arc welding[J]. Transactions of the China Welding Institution, 2013, 34(5):99-102.
    [4] 吴磊, 宋红伟. 水下焊接技术的现状及发展趋势[J]. 管道技术与设备, 2012, 2:37-39. Wu Lei, Song Hongwei. The current situation and development trend of underwater welding[J]. Pipeline Technique and Equipment, 2012, 2:37-39.
    [5] Labanowski J. Development of underwater welding techniques[J]. Welding International, 2011, 25(12):933-937.
    [6] 赵彭生, 王耀文. 等离子焊接电弧电流密度分布模型[J]. 焊接学报, 1991, 12(3):182-188. Zhao Pengsheng, Wang Yaowen. Distribution model for current density of plasma welding arcs[J]. Transactions of the China Welding Institution, 1991, 12(3):182-188.
    [7] 程方杰, 胡生辉, 高文斌, 等. 水下焊条电弧焊扩散氢含量及焊缝组织特征分析[J]. 焊接学报, 2014, 35(9):45-48. Cheng Fangjie, Hu Shenghui, Gao Wenbin, et al. Diffusible hydrogen content and microstructure characteristic in the joint by underwater shielded metal arc welding[J]. Transactions of the China Welding lnstitution, 2014, 35(9):45-48.
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  484
  • HTML全文浏览量:  13
  • PDF下载量:  272
  • 被引次数: 2
出版历程
  • 收稿日期:  2014-09-08

目录

    /

    返回文章
    返回