高级检索

20钢焊接缺陷磁记忆信号分析

徐坤山, 仇性启, 姜辉, 魏仁超, 陈长标, 仲军民

徐坤山, 仇性启, 姜辉, 魏仁超, 陈长标, 仲军民. 20钢焊接缺陷磁记忆信号分析[J]. 焊接学报, 2016, 37(3): 13-16,21.
引用本文: 徐坤山, 仇性启, 姜辉, 魏仁超, 陈长标, 仲军民. 20钢焊接缺陷磁记忆信号分析[J]. 焊接学报, 2016, 37(3): 13-16,21.
XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21.
Citation: XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21.

20钢焊接缺陷磁记忆信号分析

基金项目: 高技术研究发展计划资助项目(863计划,2013AA092602)

Analysis of magnetic memory signal of 20# steel welding defects

  • 摘要: 对含有焊接缺陷的试块进行磁记忆检测,研究了金属磁记忆检测技术对裂纹、气孔、未焊透、未熔合、夹渣缺陷的检出能力,对裂纹、气孔、未焊透、未熔合、夹渣区域的磁场强度梯度平均值Have、最大值Hmax、磁场强度梯度曲线围成的面积S(H)、磁场强度梯度平均值Kave、最大值Kmax、磁场强度梯度曲线围成的面积S(K)进行计算,并与无缺陷区域的参数进行对比分析.结果表明,焊缝中裂纹、气孔、未焊透、未熔合、夹渣区域的Kave,Kmax,S(K)明显区别于无缺陷区域,可以准确判定焊接缺陷位置;焊接缺陷和焊接残余应力虽然都会导致磁记忆信号的变化,但是二者具有本质不同.
    Abstract: The test blocks with welding defects were detected by the method of metal magnetic memory, and the testing ability of the metal magnetic memory technology on welding defects including crack, porosity, incomplete penetration, lack of fusion, slag inclusion was studied. For the welding defects such as cracking, porosity, incomplete penetration, lack of fusion, slag inclusion in welded joints, their average value Have and the maximum value Hmax of the magnetic field intensity, the area surrounded by the magnetic field intensity curve, the average value and maximum value of the magnetic field intensity gradient, the area surrounded by the magnetic field intensity gradient curve, were calculated and analyzed, respectively, which is also compared with the defect-free regions. The results show that、 of the welding defect are significantly different from parameters of the defect-free regions, whichcan accurately identify the location of welding defects. Whether it is a welding defect, or welding residual stress, itcan lead to changes of magnetic memory signal, but there are essential distinction between above two.
  • [1] Dubov A A. Diagnostics of metal items and equipment by means of metal magnetic memory[C]//Proceedings of the CHSNDT 7th Conference on NDT and International Research Symposium. Shantou China, 1999:181-187.
    [2] Dubov A A. Development of a metal magnetic memory method[J]. Chemical and Petroleum Engineering, 2012, 47(11/12):837-839.
    [3] 邸新杰, 李午申, 严春妍, 等. 焊接裂纹金属磁记忆信号的特征提取与应用[J]. 焊接学报, 2006, 27(2):19-22. Di Xinjie, Li Wushen, Yan Chunyan, et al. Feature extraction of metal magnetic memory signal and its application for weld crack[J]. Transactions of the China Welding Institution, 2006, 27(2):19-22.
    [4] 邸新杰, 李午申, 白世武, 等. 焊接裂纹金属磁记忆信号的神经网络识别[J]. 焊接学报, 2008, 29(3):13-16. Di Xinjie, Li Wushen, Bai Shiwu, et al. Metal magnetic memory signal recognition by neural network for welding crack[J]. Transactions of the China Welding Institution, 2008, 29(3):13-16.
    [5] 肖迪红, 罗大庸. 裂缝宽度对磁记忆信号的影响的研究[J]. 长沙航空职业技术学院学报, 2007, 7(1):42-44. Xiao Dihong, Luo Dayong. Research of crack width effects on the magnetic memory signal[J]. Journal of Changsha Aeronautical Vocational and Technical College, 2007, 7(1):42-44.
    [6] 梁志芳, 李午申, 王迎娜, 等. 金属磁记忆法检测焊接裂纹的时间空间有效性[J]. 焊接学报, 2006, 27(8):9-11. Liang Zhifang, Li Wushen, Wang Yingna, et al. Available time and dubious zone size of welding crack by metal magnetic memory method[J]. Transactions of the China Welding Institution, 2006, 27(8):9-11.
    [7] 丁辉, 张寒, 李晓红, 等. 磁记忆检测裂纹类缺陷的理论模型[J]. 无损检测, 2002, 24(2):78-80. Ding Hui, Zhang Han, Li Xiaohong, et al. Theoretical models of magnetic memory testing crack defects[J]. Nondestructive Testing, 2002, 24(2):78-80.
    [8] 冷建成. 基于磁记忆技术的铁磁性材料早期损伤诊断方法研究[D]. 哈尔滨:哈尔滨工业大学, 2002.
    [9] 徐明秀. 铁磁材料疲劳过程中的磁效应研究[D]. 哈尔滨:哈尔滨工业大学, 2002.
    [10] 严密, 彭晓领. 磁学基础和磁性材料[M]. 杭州:浙江大学出版社, 2006.
计量
  • 文章访问数:  472
  • HTML全文浏览量:  9
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02

目录

    /

    返回文章
    返回