高级检索

致密WC增强铁基表面复合材料的原位制备与形成机理

程仕李, 钟黎声, 毕晓静

程仕李, 钟黎声, 毕晓静. 致密WC增强铁基表面复合材料的原位制备与形成机理[J]. 焊接学报, 2016, 37(3): 1-4.
引用本文: 程仕李, 钟黎声, 毕晓静. 致密WC增强铁基表面复合材料的原位制备与形成机理[J]. 焊接学报, 2016, 37(3): 1-4.
CHENG Shili, ZHONG Lisheng, BI Xiaojing. In-situ preparation and formation mechanism of dense WC reinforced iron-based composite layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 1-4.
Citation: CHENG Shili, ZHONG Lisheng, BI Xiaojing. In-situ preparation and formation mechanism of dense WC reinforced iron-based composite layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 1-4.

致密WC增强铁基表面复合材料的原位制备与形成机理

基金项目: 国家科技计划资助项目对俄科技合作专项(2014-DFR50630);国家高技术研究发展计划(863计划)项目(2013-AA031803);国家自然科学基金资助项目(51374169);陕西省科学技术研究发展计划项目工业攻关计划(2014K08-13)

In-situ preparation and formation mechanism of dense WC reinforced iron-based composite layer

  • 摘要: 利用铸渗复合-热处理工艺制备致密碳化钨增强铁基表面复合材料,研究了不同保温时间下复合材料的物相组成与微观组织.结果表明,不同保温时间下,复合材料表面均有致密碳化钨层生成,反应层厚度最大为148 μm.致密碳化钨层的显微硬度随保温时间无明显变化,均明显高于铁基体.铁基表面致密碳化钨的形成主要依赖于Fe-C-W体系中碳和钨原子的扩散与原位反应.
    Abstract: Densetungsten carbide reinforced iron-based surface layer were prepared via casting-infiltration and heat treatment process. The microstructure of samples obtained by different heating time was researched.The results showed that dense tungsten carbide layer was generated on the surface.The thickness of the layer was increased with the heating time; the maximum thickness reached 148 μm. The micro-hardness of the layer was significantly higher thanthe iron matrix and it didn't change a lot with the varying heating time.The formation of dense tungsten carbide layer depended on the diffusion and the interaction in-situ of C and W atoms in the Fe-C-W system.
  • [1] 刘建伟, 解念锁. 表面复合材料制备技术与应用[J]. 科技创新导报, 2009, 32:206. Liu Jianwei, Xie Niansuo. Preparation technology and application of surface composite material[J]. Science and Technology Innovation Herald, 2009, 32:206.
    [2] Celik O N. Microstructure and wear properties of WC particle reinforced composite coating on Ti6Al4V alloy produced by the plasma transferred arc method[J]. Applied Surface Science, 2013, 274:334-340.
    [3] Trueba M, Aramburu A, Rodríguez N, et al. "In-situ" mechanical characterisation of WC-Co hardmetals using microbeam testing[J]. International Journal of Refractory Metals and Hard Materials, 2014, 43:236-240.
    [4] Borgh I, Hedstr m P, Borgenstam A, et al. Effect of carbon activity and powder particle size on WC grain coarsening duringsintering of cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42:30-35.
    [5] 卢金斌, 张照军, 宁久超, 等. 添加碳化钨铁基合金等离子弧熔覆复合涂层的组织分析[J]. 焊接学报, 2009, 30(9):65-68. Lu Jinbin,Zhang Zhaojun,Ning Jiuchao, et al. Microstructure analysis on composite coating of Fe-based alloy added WC by plasma cladding[J]. Transactions of the China Welding Institution, 2009, 30(9):65-68.
    [6] 李福泉, 陈彦宾, 李俐群. Q235钢表面激光熔注WC涂层的微观组织及耐磨性[J]. 焊接学报, 2010, 31(4):28-32. Li Fuquan, Chen Yanbin,Li Liqun. Microstructure and wear property of surface modification layer produced by laser melt injection WC on Q235 steel[J]. Transactions of the China Welding Institution, 2010, 31(4):28-32.
    [7] 高明星, 郭长庆, 程军, 等. WC颗粒增强高锰钢基表面复合材料组织和硬度的研究[J]. 内蒙古科技大学学报, 2008, 27(4):312-315. Gao Mingxing, Guo Changqing, Cheng Jun, et al. The research of WC particle reinforced high manganese steel matrix surface composites structure and hardness[J]. Journal of Inner Mongolia University of Science and Technology, 2008, 27(4):312-315.
    [8] 鱼澎, 许云华, 刘晓洁, 等. 钨丝与灰铸铁原位合成WC的研究[J]. 热加工工艺, 2011, 40(4):67-72. Yu Peng, Xu Yunhua, Liu Xiaojie, et al. Research on in-situ synthesized WC between tungsten wires and gray cast iron[J]. Hot Working Technology, 2011, 40(4):67-72.
计量
  • 文章访问数:  498
  • HTML全文浏览量:  10
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-26

目录

    /

    返回文章
    返回