高级检索

电阻缝焊数值模拟研究进展

岑耀东, 陈芙蓉

岑耀东, 陈芙蓉. 电阻缝焊数值模拟研究进展[J]. 焊接学报, 2016, 37(2): 123-128.
引用本文: 岑耀东, 陈芙蓉. 电阻缝焊数值模拟研究进展[J]. 焊接学报, 2016, 37(2): 123-128.
CEN Yaodong, CHEN Furong. Recent progress in numerical simulation of resistance seam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 123-128.
Citation: CEN Yaodong, CHEN Furong. Recent progress in numerical simulation of resistance seam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 123-128.

电阻缝焊数值模拟研究进展

Recent progress in numerical simulation of resistance seam welding

  • 摘要: 电阻缝焊过程的热影响区随着滚轮电极的旋转而不断移动,熔核彼此搭迭,形核过程处于封闭状态且无法观测,焊接参数及性能比点焊更加难以准确计算. 数值模拟作为一种功能强大的分析手段,解决了电阻缝焊领域中传统分析方法无法解决的问题,越来越受到焊接研究人员的重视. 文中综述了国内外近几年来的研究成果,对比了电阻缝焊与电阻点焊的特点,总结出电阻缝焊过程中电流场、温度场、应力场(应变场)三大领域的数值模拟方法,以及焊后焊缝形状、焊缝跟踪、无损探伤等智能控制技术,并对这些方法的原理进行了分析和探讨,提出开发多参数、多变量综合数学模型是将来电阻缝焊数值模拟技术的研究重点. 此外,指出发展与先进的在线实时监控系统及无损检测技术相适应的数值模拟技术将是电阻缝焊重要的研究方向.
    Abstract: The heat-affected zone of resistance seam weld moves with the rolling disc electrode, so the nugget laps with each other, then the nucleation process occurred in a closed state and cannot be observed. It is more difficult to accurately calculate the welding parameters and performance of joint in resistance seam welding than in spot welding. As a powerful analysis method, numerical simulation has solved problems in resistance seam welding field that the traditional analysis method cannot solve, and attracts more and more attention. This paper reviews the recent research achievements at home and abroad, compares the features of resistance seam welding and resistance spot welding, summaries the numerical simulation methods for welding current field, temperature field and stress field (strain field) in resistance seam welding process. It also concludes the intellectual control techniques for weld shape, weld tracking and nondestructive test. The principles of these methods and techniques are analyzed and discussed. The development of multi-parameters and multi-variable integrated model will be the research focus of numerical simulation of resistance seam welding process in the future. Developing advanced online real-time monitoring system and nondestructive test technology and corresponding numerical simulation technique will be important research fields in resistance seam welding.
  • [1] 史耀武. 焊接技术手册[M]. 北京: 化学工业出版社, 2009.
    [2] 姚秀华, 刘 笛. 浅谈电极对平行缝焊质量的影响[J]. 电子与封装, 2010, 10(4): 12-14. Yao Xiuhua, Liu Di. The influence of the electrode on the quality of the parallel seam welding[J]. Electronics & Packaging, 2010, 10(4): 12-14.
    [3] 王成刚. 基于真空电阻焊的MEMS器件级封装研究[D]. 武汉: 华中科技大学, 2013.
    [4] 刘照伟, 杨立军, 史彩云, 等. 电阻点焊质量监控技术的发展现状和趋势[J]. 电焊机, 2006, 36(9): 1-3. Liu Zhaowei, Yang Lijun, Shi Caiyun, et al. Advancement and trend of monitoring control in resistance spot welding[J]. Electric Welding Machine, 2006, 36(9): 1-3.
    [5] 张建勋, 雷兵飞. 电阻点焊过程数值模拟与仿真分析技术[C]//第十一次全国焊接会议论文集(第2册), 上海, 2005.
    [6] 刘 昶, 郭钟宁, 莫秉华. 电阻点焊过程数值模拟技术研究进展及应用[J]. 焊接技术, 2010, 39(9): 18-21. Liu Chang, Guo Zhongning, Mo Binghua. Research progress and application of numerical simulation technology in resistance spot welding process[J]. Welding Technology, 2010, 39(9): 18-21.
    [7] Suthar B S, Brown S G R. An FE computer model to investigate the effects of varying A.C.frequency and strip speed during high speed resistance seam welding of tinplate[J]. WIT Transactions on the Built Environment, 2005, 80(10): 431-439.
    [8] Kazakov Yu V, Potekhin V P. Mechanism of the formation of the weld core in the resistance seam welding of components with greatly differing thickness[J]. Welding Internationalv, 2012, 26(9): 723-727.
    [9] Alotto P, Guarnieri M. A cell method-based numerical model for resistance welding[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30(5): 1479-1486.
    [10] Toyoda Shunsuke, Goto Sota. Metallurgical design and performance of erw linepipe with high-quality weld seam suitable for extra-low-temperature services[J]. Proceedings of the Biennial International Pipeline Conference, 2012, 3(0): 439-446.
    [11] 于恩林, 韩 毅, 范玉林, 等. HFW管高频感应加热过程电磁热耦合数值模拟[J]. 焊接学报, 2010, 31(4): 5-8. Yu Enlin, Han Yi, Fan Yulin. Simulation of coupling of e lectrom agnetic and thermal fields for process of high frequency induction heating of HFW pipe[J]. Transsactions of the China Weiding Institution, 2010, 31(4): 5-8.
    [12] Zhu Wenfeng, Wang Jie. Numerical simulation of influence of different heat source models on temperature field of aluminum-alloy ring weld seam[J]. Applied Mechanics and Materials, 2014, 456(0): 216-219.
    [13] Li Jun, Zhang Wenfeng. Numerical simulation of longitudinal plastic strain field in thin-plate weldment of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(1): 4-8.
    [14] 李永强, 赵 贺, 赵熹华, 等. 低碳钢激光束电阻缝焊复合焊接中电阻缝焊温度场的数值模拟[J]. 吉林大学学报(工学版), 2010, 40(3): 709-713. Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during mild steel LB-RSW[J]. Journal o f Jilin University, 2010, 40(3): 709-713.
    [15] 李永强, 赵 贺, 赵熹华, 等. 铝合金LB-RSW焊接中RSW温度场的数值模拟[J]. 焊接学报, 2009, 30(4): 29-32. Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. Transsactions of the China Weiding Institution, 2009, 30(4): 29-32.
    [16] 李永强. "激光束-电阻缝焊"复合焊接方法基础研究[D]. 长春: 吉林大学, 2009.
    [17] 何世权, 林 建, 石 玗, 等. 基于ANSYS有限元对高频焊接的三维温度场模拟[J]. 兰州理工大学学报, 2010, 36(5): 27-36. He Shiquan, Lin Jian, Shi Yu, et al. Simulation of three-dimensional temperature field of high-frequency welding based on ANSYS and finite element method[J]. Journal of Lanzhou University of Technology, 2010, 36(5): 27-36.
    [18] 何世权, 刘 飞, 樊 丁, 等. 基于ANSYS 的高频直缝焊管主要控制参数模拟[J]. 江苏大学学报(自然科学版), 2011, 32(5): 583-586. He Shiquan, Liu Fei, Fan Ding, et al. Welding control parameters simulation of high-frequency electric resistance welded pipe based on ANSYS[J]. Journal of Jiangsu University, 2011, 32(5): 583-586.
    [19] 何世权, 刘 飞, 徐德怀. 高频焊管在焊接过程中三维应力场的模拟[J]. 兰州理工大学学报, 2011, 37(3): 16-19. He Shiquan, Liu Fei, XU Dehuai. simulation of three-dimensional stress field in welding process of high-frequency welded pipe[J]. Journal of Lanzhou University of Technology, 2011, 37(3): 16-19.
    [20] 李继红, 王文武, 赵鹏康. 连续油管电阻焊残余应力场的数值分析[J]. 焊接学报, 2011, 32(10): 73-76. Li Jihong, Wang Wenwu, Zhao Pengkang. Numerical analysis of ERW welding residual stress field for coiled tubing[J]. Transactions of the China Welding Institution, 2011, 32(10): 73-76.
    [21] 许晓飞, 刘志军, 史启财, 等. 电阻焊接波形传热板的应力分析与测试[J]. 机械工程学报, 2008, 44(4): 97-101. Xu Xiaofei, Liu Zhijun, Shi Qicai, et al. Stresses analysis and measure of the wavy heat transfer plate made by resistance welds[J]. Chinese Journal of Mechanical Engineering, 2008, 44(4): 97-101.
    [22] Yang Taibo, Yu Zhongqi. Numerical analysis for forming limit of welded tube in hydro forming[J]. Journal of Shanghai Jiaotong University, 2011, 45(1): 6-10.
    [23] 孙宝福, 金有海. 高频直缝焊管成型过程仿真分析[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 123-126. Sun Baofu, Jin Youhai. Simulation analysis of shaping process of high frequency longitudinal electric resistance welded pipe[J]. Journal of China University of Petroleum, 2010, 34(4): 123-126.
    [24] 陈仙风. 直缝焊管液压成形极限理论预测模型[J]. 机械工程学报, 2011, 47(20): 116-120. Chen Fengxian. Prediction model for forming limit of welded tube hydroforming[J]. Journal of Shanghai Jiaotong University, 2011, 47(20): 116-120.
    [25] 王会峰, 李云龙, 李记科. 基于数字图像技术的高频电阻焊状态监测[J]. 华南理工大学学报(自然科学版), 2012, 40(11): 84-88. Wang Huifeng, Li Yunlong, Li Jike. State monitoring of high-frequency electric resistance welding based on digital image technology[J]. Journal of South China University of Technology, 2012, 40(11): 84-88.
    [26] Wang Jianhui, Wang Chao. Application of soft sensor in welding seam tracking prediction based on LSSVM and PSO with compression factor[C]//25th Chinese Control and Decision Conference, 2013: 2441-2446.
    [27] 洪宇翔, 向小明, 洪 波. 一种应用于薄板搭接的磁控电弧焊缝跟踪方法[J]. 焊接学报, 2013, 34(10): 67-70. Hong Yuxiang, Xiang Xiaoming, Hong Bo. A seam tracking method for overlap sheet welding based on magnetic-control arc sensing[J]. Transsactions of the China Weiding Institution, 2013, 34(10): 67-70.
    [28] 赵熹华, 李永强, 赵 贺, 等. 激光束-电阻缝焊(LB-RSW)复合焊接研究[J]. 电焊机, 2009, 39(1): 33-37. Zhao Xihua, Li Yongqiang, Zhao He, et al. Funda mental study on hybrid laser beam resistance seam welding[J]. Electric Welding Machine, 2009, 39(1): 33-37.
    [29] 李龙波, 李国华, 邢 亮, 等. 焊管内裂纹电磁激励红外无损检测数值模拟[J]. 激光与红外, 2014, 44(1): 25-29. Li Longbo, Li Guohua, Xing Liang, et al. Numerical simulation of electromagnetic exciting infrared NDT of internal crack in welding pipe[J]. Laser & Infrared, 2014, 44(1): 25-29.
    [30] 李龙波, 李国华, 高聚春, 等. 直缝焊管表面裂纹的电磁激励红外热像无损检测数值模拟[J]. 金属热处理, 2013, 38(9): 110-113. Li Longbo, Li Guohua, Gao Juchun, et al. Numerical simulation of non-destructive test of surface crack of straight seam welding pipe electromagnetically stmulated thermography[J]. Heat Treatment of Metals, 2013, 38(9): 110-113.
计量
  • 文章访问数:  439
  • HTML全文浏览量:  3
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-03

目录

    /

    返回文章
    返回