基于激光视觉的角焊缝图像特征点提取
Image feature extraction of fillet weld based on laser vision
-
摘要: 提出一种借助线激光从图像中提取角焊缝特征点的方法,克服了线激光在角焊缝表面的反光对提取光条中心线的影响,有效地识别出了角焊缝特征点. 首先,根据局部对比度区分实际光条与反光条纹,用阈值分割结合图像形态学方法分割出实际光条,并确定ROI区域;其次,根据光条截面的灰度分布提取光条中心点;最后,用迭代最小二乘法拟合分段光条中心线方程并确定角焊缝特征点. 结果表明,该方法能够快速准确地提取表面光亮角焊缝的亚像素图像特征点,在主频3.4 GHz的PC机上共用时0.35 s,能够满足焊接速度为0~25 mm/s的普通焊接设备的实时性要求.Abstract: An approach is put forward to extract image feature points of fillet weld with the assistance of laser line. It overcomes the influence of the reflective stripes in the surface of fillet weld and identifies the feature points effectively. Firstly, the actual stripes and reflective stripes were distinguished by local contrast, then the actual stripes were divided by combination of morphological method and threshold segmentation, and the region of interest was determined. Secondly, the center points in light stripes were extracted according to the intensity distribution of the cross-section of light stripe. Finally, the iterative least-squares fitting method was applied to fit the piecewise centerline equations and to determine the fillet feature points. The experimental results show that this method can extract the sub-pixel image feature points from fillet weld with bright surface rapidly and accurately. It costs about 0.35s running on a PC whose CPU is clocked at 3.4 GHz, which can meet the real-time requirements of ordinary welding equipment with welding speed of 0-25 mm/s.
-
Key words:
- linear laser /
- reflective stripe /
- laser-stripe center /
- piecewise linear fitting
-
[1] Wu B, Xue T, Zhang T, et al. A novel method for round steel measurement with a multi-line structured light vision sensor[J]. Measurement Science and Technology, 2010, 21(2): 025204-025208. [2] Li Y, Li Y F, Wang Q L, et al. Measurement and defect detection of the weld bead based on online vision inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1841-1849. [3] 陈海永, 孙鹤旭, 徐 德. 一类窄焊缝的结构光图像特征提取方法[J]. 焊接学报, 2012, 33(1): 61-64. Chen Haiyong, Sun Hexu, Xu De. An image feature extraction method for a certain kind of narrow gap weld seam[J]. Transactions of the China Welding Institution, 2012, 33(1): 61-64. [4] 李中伟, 王从军, 史玉升. 一种结合梯度锐化和重心法的光条中心提取算法[J]. 中国图象图形学报, 2008, 13(1): 64-68. Li Zhongwei, Wang Congjun, Shi Yusheng. An algorithm for detecting center of structured light stripe combining gradient sharpening with barycenter method[J]. Journal of Image and Graphics, 2008, 13(1): 64-68. [5] Steger C. Unbiased extraction of lines with parabolic and Gaussian profiles[J]. Computer Vision and Image Understanding, 2013, 117(2): 97-112. [6] 赵小松, 张国雄, 张宏伟. 测量强反射表面的测头研究[J]. 天津大学学报, 2004, 37(3): 274-277. ZhaoXiaosong, Zhang Guoxiong, Zhang Hongwei. Probe for measuring high reflective surface[J]. Journal of Tianjin University, 2004, 37(3): 274-277. [7] 赵博华, 王伯雄, 张 金, 等. 粗糙金属表面光条中心提取方法[J]. 光学精密工程, 2011, 19(9): 2138-2144. Zhao Bohua, Wang Boxiong, Zhang Jin, et al. Extraction of laser strip center on rough metal surface[J]. Optics and Precision Engineering, 2011, 19(9): 2138-2144. [8] 丁 锋. 系统辨识新论[M]. 北京: 科学出版社, 2013. [9] 秦 涛, 张 轲, 邓景煜, 等. 基于改进最小二乘法的焊缝特征直线提取方法[J]. 焊接学报, 2012, 33(2): 33-36. Qin Tao, Zhang Ke, Deng Jingyu, et al. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. Transactions of the China Welding Institution, 2012, 33(2): 33-36. -

计量
- 文章访问数: 771
- HTML全文浏览量: 36
- PDF下载量: 324
- 被引次数: 0