高级检索

Fe-C合金焊接熔池凝固过程CET转变的数值模拟

张敏, 徐蔼彦, 汪强, 李露露

张敏, 徐蔼彦, 汪强, 李露露. Fe-C合金焊接熔池凝固过程CET转变的数值模拟[J]. 焊接学报, 2016, 37(2): 5-8,54.
引用本文: 张敏, 徐蔼彦, 汪强, 李露露. Fe-C合金焊接熔池凝固过程CET转变的数值模拟[J]. 焊接学报, 2016, 37(2): 5-8,54.
ZHANG Min, XU Aiyan, WANG Qiang, LI Lulu. Numerical simulation of CET transformation in solidification of Fe-C alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 5-8,54.
Citation: ZHANG Min, XU Aiyan, WANG Qiang, LI Lulu. Numerical simulation of CET transformation in solidification of Fe-C alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 5-8,54.

Fe-C合金焊接熔池凝固过程CET转变的数值模拟

基金项目: 国家自然基金资助项目(51274162);国家高技术研究发展计划(863计划)(2013AA031303);陕西省自然科学基金资助项目(2012JM6003);陕西省教育厅产业化培育项目(No.2012.JC16);西安市科技计划项目(No.CX12163)

Numerical simulation of CET transformation in solidification of Fe-C alloy weld pool

  • 摘要: 基于元胞自动机方法建立了枝晶生长的数值模型,应用该模型模拟了Fe-C合金焊接熔池凝固期间柱状晶向等轴晶(CET)转变过程中枝晶生长形貌与溶质浓度分布状况. 模拟过程主要考虑不同扰动振幅和冷却速率对柱状晶向等轴晶转变的影响. 结果表明,随着时间步长增大,晶粒数逐渐增多,最终趋于稳定值;当冷却速率增加时,生长速度增大,枝晶生长的越充分,显微偏析越严重,而CET转变所需时间越短;当扰动振幅增大时,一次枝晶生长的越细,二次、三次枝晶竞争越激烈.
    Abstract: A new model of dendritic growth based on cellular automaton method was developed to simulate the columnar-to-equiaxed grain transition and the distribution of solute concentration during solidification in Fe-C alloy weld pool. The influences of different disturbance amplitudes and different cooling rates on the columnar-to-equiaxed grain transition were considered. The results indicate that the grains increased gradually and became stable eventually. When the cooling speed increased, the growth rate increased and the microsegregation was more serious, and the columnar-to-equiaxed grain transition happened easier. Meanwhile, the disturbance amplitude affected the dendritic morphology and especially the growth of secondary and tertiary dendrite arms.
  • [1] 马 瑞, 董志波, 魏艳红, 等. 镍基合金焊缝凝固组织演变过程模拟和仿真[J]. 焊接学报, 2010, 31(7): 43-46. Ma Rui, Dong Zhibo, Wei Yanhong, et al. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. Transactions of the china welding institution, 2010, 31(7): 43-46.
    [2] Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice boltzmann and cellular automaton methods[J]. Acta Materialia, 2011, 59(8): 3124-3136.
    [3] Lin H K, Chen C C, Lan C W. Adaptive three-dimensional phase-field modeling of dendritic crystal growth with high anisotropy[J]. Journal of Crystal Growth, 2011, 318(1): 51-54.
    [4] Zhao Y, Qin R S, Chen D F. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification[J]. Journal of Crystal Growth, 2013, 377(15): 72-77.
    [5] 赵玉珍, 赵海燕, 史耀武. 1Cr18Ni9Ti不锈钢焊接熔池的组织模拟[J]. 焊接学报, 2008, 29(12): 13-16. Zhao Yuzhen, Zhao Haiyan, Shi Yaowu. Microstructure simulation in welding 1Cr18Ni9Ti steel[J]. Transactions of the china welding institution, 2008, 29(12): 13-16.
    [6] 黄安国, 余圣甫, 李志远. 焊缝金属凝固组织元胞自动机模拟[J]. 焊接学报, 2008, 29(4): 45-48. Huang Anguo, Yu Shengfu, LI Zhiyuan. Simulation on weld metal solidifying microstructure with cellular automaton[J].Transactions of the china welding institution, 2008, 29(4): 45-48.
    [7] 朱鸣芳, 陈 晋. 枝晶生长的数值模拟[J]. 金属学报, 2005, 41(6): 583-587. Zhu Mingfang, Chen Jin. Numercical modeling of dendriticgrowith[J]. Acta Metallrgica Sinica, 2005, 41(6): 583-587.
计量
  • 文章访问数:  386
  • HTML全文浏览量:  2
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07

目录

    /

    返回文章
    返回