高级检索

新一代功率芯片耐高温封装连接国内外发展评述

冯洪亮, 黄继华, 陈树海, 赵兴科

冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
引用本文: 冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.
Citation: FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.

新一代功率芯片耐高温封装连接国内外发展评述

基金项目: 国家自然科学基金资助项目(51474026)

Review on high temperature resistant packaging technology for new genetation power semiconductor devices

  • 摘要: 新一代半导体高温功率芯片可在500 ℃左右甚至更高的温度下服役,耐高温封装已成为其高温应用的主要障碍. 针对当前高温功率芯片耐高温封装连接问题,从芯片耐高温封装连接的结构及要求、芯片的耐高温封装连接方法(包括高温无铅钎料封装连接、银低温烧结连接、固液互扩散连接和瞬时液相烧结连接)及存在的问题等方面对国内外研究现状、动态进行了分析和评述,并提出了今后高温功率芯片耐高温封装连接的研究重点和发展方向.
    Abstract: The new generation semiconductor materials have good conversion characteristics and heat tolerance, enabling the power electronic devices to operate at 500 ℃ or even higher, however, their usage over such wide temperature ranges is limited by the temperature stability of packag. This paper presents the structural requirements of high temperature resistant packagingand analyzes the current research status of high temperature resistant joining technologies (including high temperature lead-free solder joining, low temperature silver sintering-bonding, solid-liquid inter-diffusion bonding and transient liquid phase sintering-bonding) as well as problems. The future challenge and prospect related to high temperature resistant packaging is also proposed in this article.
  • [1] Neudeck P G, Spry D J, Chen L Y, et al. Stable electrical operation of 6H-SiC JFETs and ICs for thousands of hours at 500 ℃[J]. IEEE Electron Device Letters, 2008, 29(5): 456-459.
    [2] Alexandru M, Banu V, Vellvehi M, et al. Design of digital electronics for high temperature using basic logic gates made of 4H-SiC MESFETs[J]. Materials Science Forum, 2012, 711: 104-108.
    [3] Iwasaki T, Hoshino Y, Tsuzuki K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177.
    [4] Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 ℃ operational amplifier in 4H-SiC bipolar technology[J].IEEE Electron Device Letters, 2014, 35(7): 693-695.
    [5] Le-Huu M, Schmitt H, Noll S, et al. Investigation of the reliability of 4H-SiC MOS devices for hightemperature applications[J].Micro-electronics Reliability, 2011, 51(3): 1346-1350.
    [6] Casals O, Becker T, Godignon P, et al. SiC-based MIS gas sensor for high water vapor environments[J]. Sensors and Actuators B:Chemical, 2012, 175(12): 60-66.
    [7] Maier D, Alomari M, Grandjean N, et al. InAlN/GaN HEMTs for operation in the 1 000 ℃ regime: a first experiment[J]. IEEE Electron Device Letters, 2012, 33(7): 985-987.
    [8] Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Engineering Sciences, 2012, 10(5): 36-41.
    [9] Yang J. A Harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719-2734.
    [10] Chin H S, Cheong K Y, Ismail A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transaction B, 2010, 41(8): 824-831.
    [11] 张 波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望[J]. 中国电子科学院学报, 2009, 4(2): 112-118. Zhang Bo, Deng Xiaochuan, Zhang Yourun, et al. Recent development and future perspective of silicon carbide power devices—opportunity and challenge[J]. Journal of CAE IT, 2009, 4(2): 112-118.
    [12] Coppola L, Huff D, Wang F, et al. Survey on high-temperature packaging materials for SiC-based power electronics modules[C]//Power Electronics Specialists Conference(PESC), Orlando: IEEE, 2007: 2234-2240.
    [13] Jürgen S H. Advantages and new development of direct bonded copper substrates[J]. Microelectronics Reliability, 2003, 43(3): 359-365.
    [14] He H, Fu R L, Wang D L, et al. A new method for preparation of direct bonding copper substrate on Al2O3[J]. Materials Letters, 2007, 61(1): 4131-4133.
    [15] Tollefsen T A, Larsson A, Løvik O M, et al. Au-Sn SLID bonding-properties and possibilities[J]. Metallurgical and Materials Transaction B, 2012, 43(12): 397-405.
    [16] Tollefsen T A, Løvik O M, Aasmundtveit K, et al. Communication effect of temperature on the die shear strength of a Au-Sn SLID bond[J]. Metallurgical and Materials Transaction A, 2013, 44(4): 2914-2916.
    [17] Tollefsen T A, Larsson A, Taklo M M V, et al. Au-Sn SLID bonding: areliable HT interconnect and die attach technology[J]. Metallurgical and Materials Transaction B, 2013, 44(1): 406-413.
    [18] Xu H, Suni T, Vuorinen V, et al. Wafer-level SLID bonding for MEMS encapsulation[J]. International Journal of Advanced Manufacturing Technologies, 2013, 1(3): 226-235.
    [19] 黄明亮, 周少明, 陈雷达, 等. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86. Huang Mingliang, Zhou Shaoming, Chen Leida, et al. Effect of elctroless Ni-P consumption on the failure mechanism of solder joints during electromigration[J]. Acta Metallurgica Sinica, 2013, 49(1): 81-86.
    [20] Ho C E , Hsieh W Z, Yang T H. Depletion andphase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu[J]. Electronnic Materials Letters, 2015, 11(1): 155-163.
    [21] Mustain H A, Brown W D, Ang S S. Transient liquid phase die attach for high-temperature silicon carbide power devices[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(3): 563-570.
    [22] Kang N, Na H S, Kim S J, et al. Alloy design of Zn-Al-Cu solder for ultra hightemperatures[J]. Journal of Alloys and Compounds, 2009, 467(1/2): 246-250.
    [23] Kim S J, Kim K S, Kim S S, et al. Characteristics of Zn-Al-Cu alloys for high temperature solder application[J]. Materials Transactions, 2008, 49(7): 1531-1536.
    [24] Gancarz T, Pstrus'J, Fima P, et al. Thermal properties and wetting behavior of high temperature Zn-Al-In solders[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 599-605.
    [25] Haque A, Lim B H, Haseeb A S M A, et al. Die attach properties of Zn-Al-Mg-Ga based high-temperature lead-free solder on Cu lead-frame[J]. Journal of Materials Science: Mater Electron. 2012, 23(9): 115-123.
    [26] Shimizu T, Ishikawa H, Ohuma I, et al. Zn-Al-Mg-Ga alloys as Pb-Free solder for die-attaching use[J]. Journal of Electronic Materials, 1999, 28 (11): 1172-1175.
    [27] Cheng F, Gao F, Wang Y, et al. Sn addition on the tensile properties of high temperature Zn-4Al-3Mg solder alloys[J]. Microelectronics Reliability, 2012, 52(3): 579-584.
    [28] Tanimoto S, Matsui K, Yusuke Z, et al. Eutectic Zn-Al die attachment for higher Tj SiC power applications: fabrication method and die shear strength reliability[J]. Journal of Microelectronics and Electronic Packaging, 2013, 10(2): 59-66.
    [29] Tanimoto S, Matsui K, Yusuke Z, et al. Common metal die attachment for SiC power devices operated in an extended junction temperture range[J]. Material Science, 2012, 717/720(9): 853-856.
    [30] Kim S, Kim K S, Suganuma K, et al. Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates[J]. Journal of Electronal Materials, 2009, 38(6): 873-83.
    [31] Yost F G, Karnowsky M M, Drotning W D, et al. Thermal expansion and elastic properties of high gold-tin alloys[J]. Metallurgical and Transactions A, 1990, 21A: 1885-1889.
    [32] 韦小凤, 王 檬, 王日初, 等. AuSn钎料及AuSn/Ni焊点的组织性能研究[J]. 稀有金属材料与工程, 2013, 42(3): 639-643. Wei Xiaofeng, Wang Meng,Wang Richu, et al. Microstructure and properties of AuSn solder and AuSn/Ni joint[J]. Rare Metal Materials and Engineering, 2013, 42(3): 639-643.
    [33] Wei X F, Wang R C, Peng C Q, et al. Interfacial reaction and shear strength of AuSn20/Ni solder joints[J].The Chinese Journal of Nonferrous Metals, 2013, 23(7): 1907-1913.
    [34] Wei X F, Zhang Y K, Wang R C, et al. Microstructural evolution and shear strength of AuSn20/Ni single lap solder joints[J]. Microelectronics Reliability, 2013, 53(2): 748-754.
    [35] Chung H M, Chen C M, Lin C P, et al. Microstructural evolution of the Au-20%Sn solder on the Cu substrate during reflow[J]. Journal of Alloys and Compounds, 2009, 485(6): 219-224.
    [36] Lang F, Nakagawa H, Yamaguchi H. Soldering of non-wettable Al electrode using Au-based solder[J]. Gold Bull, 2014, 47(11): 109-118.
    [37] Zhang G S, Jing H Y, Xu L Y, et al. Creep behavior of eutectic 80Au/20Sn solder alloy[J]. Journal of Alloys and Compounds, 2009, 476(5): 138-141.
    [38] Chidambaram V, Hald J, Hattel J. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders[J]. Journal of Alloys and Compounds, 2010, 490(2): 170-179.
    [39] Chidambaram V, Yeung H B, Shan G. Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics[J]. Journal of Electronic Materials, 2012, 41(8): 2107-2116.
    [40] Lalena J N, Dean N F, Weiser M W, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attach-ment[J]. Journal of Electronic Materials, 2002, 31(11): 1244-1249.
    [41] Shi Y, Fang W, Xia Z, et al. Investigation of rare earth-doped Bi-Ag high-temperature solders[J]. Journal of Materials Science: Materialsin Electronics, 2010, 21(7): 875-881.
    [42] Song J M, Chuang H Y, Wen T X. Thermal and tensile properties of Bi-Ag alloys[J]. Metallurgical and Materials Transaction A, 2007, 38A(6): 1371-1375.
    [43] El-Daly A A, Swilem Y, Hammad A E. Creep properties of Sn-Sb based lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009,471(3): 98-104.
    [44] El-Daly A A, Fawzyb A, Mohamada A Z, et al. Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu[J]. Journal of Alloys and Compounds, 2011, 509(13): 4574-4582.
    [45] Zeng Q, Guo J, Gu X, et al. Wetting behaviors and interfacial reaction between Sn-10Sb-5Cu high temperature lead-free solder and Cu substrate[J]. Journal of Materials Science & Technology, 2010, 26(2): 156-162.
    [46] Plevachuk Yu, Hoyer W, Kaban I, et al. Experimental study of density, surface tension, and contact angle of Sn-Sb-based alloys for high temperature soldering[J]. Journal of Materials Science, 2010, 45(8): 2051-2056.
    [47] Kim J H, Jeong S W, Lee H M. Thermodynamics-aided alloy design and evaluation of Pb-free solders for high-temperature applications[J]. Materials Transaction, 2002, 43(8): 1873-1878
    [48] Kolenňák R, Martinkovic M, Koleń Aková M.Shear strength and DSC analysis of high-temperature solders[J].Archives of Metallurgy and Materials, 2013, 58(2): 529-533.
    [49] Suganuma K, Kim S J, Kim K S. High-temperature lead-free solders: properties and possibilities[J]. Journal of the Minerals Metals & Materials Society, 2009, 61(1): 64-71.
    [50] Schwarzbauer H, Kuhnert R. Novel large area joining technique for improved power device performance[C]//IEEE Industry Applications Society Annual Meeting, San Diego: Conference Record of the IEEE, 1989: 1348-1351.
    [51] Schwarzbauer H. Method of securing electroniccomponents to a substrate: united states, 4810672[P]. 1989-03-07.
    [52] Schwarzbauer H, Kuhnert R. Novel large area joining technique forimproved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 21(1): 93-95.
    [53] Zhang Z, Lu G Q. Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25(4): 279-283.
    [54] Amro R, Lutz J, Rudzki J, et al. Power cycling at high temperature swings of modules with low temperature joining technique[C]//International Symposium on Power Semiconductor Devices and IC’s(ISPSD 2006), Naples, Italy: IEEE, 2006:1-4.
    [55] Ide E, Angata S, Hirose A, et al. Meta-lmetal bonding processusing Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393.
    [56] Bai J G, Lu G Q. Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly[J]. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 436-441.
    [57] Riva R, Buttay C, Allard B, et al. Migration issues in sintered-silver die attaches operating at high temperature[J]. Microelectronics Reliability, 2013, 53(9/11): 1592-1596.
    [58] Lei T G, Calata J N, Lu G Q, et al. Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technology, 2010, 33(1): 98-104.
    [59] Zheng H, Berry D, Calata J, et al. Low-pressure joining of large-area devices on copper using nanosilverpaste[J]. IEEE Transactions On Components, Packaging and Manufacturing Technology, 2013, 3(6): 915-921.
    [60] Morisada Y, Nagaoka T, Fukusumi M, et al. A low-temperature bonding process using mixed Cu-Ag nanoparticles[J]. Journal Electronic Materials, 2010, 39(8): 1283-1288.
    [61] Ishizaki T, Satoh T, Kuno A, et al. Thermal characterizations of Cu nanoparticle joints for power semiconductor devices[J]. Microelectronics Reliability, 2013, 53(9/11): 1543-1547.
    [62] Yan J F, Zou G S, Wu A P, et al. Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application[J]. Journal of Electeronic Materials, 2012, 41(7): 1886-1892.
    [63] 张颖川, 闫剑锋, 邹贵生, 等. 纳米银与纳米铜混合焊膏用于电子封装低温烧结连接[J]. 焊接学报, 2013, 34(8): 17-22. Zhang Yingchuan, Yan Jianfeng, Zou Guisheng, et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of the China Welding Institution, 2013, 34(8): 17-22.
    [64] Suganuma K, Sakamoto S, Kagami N, et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 2012, 52(2): 375-380.
    [65] Li X, Chen G, Wang L, et al. Creep properties of low-temperature sintered nano-silverlap shear joints[J]. Materials Science & Engineering A, 2013, 579(1): 108-113.
    [66] Bernstein L. Semiconductor joining by the solid-liquid-interdiffusion (SLID) process[J]. Journal of the Electrochemical Society, 1966, 113(10): 1282-1288.
    [67] Tian Y H, Wang N, Li Y, et al. Mechanism of low temperature Cu-In solid-liquid interdiffusionbonding in 3D package[C]//2012 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Guilin, 2012: 216-218.
    [68] Li J F, Agyakwa P A, Johnson C M. Suitable Thicknesses of base metal and interlayer, andevolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment[J]. Journal of Electronic Materials, 2014, 43(4): 983-995.
    [69] Flötgen C, Pawlak M, Pabo E, et al. Wafer bonding using Cu-Sn intermetallic bonding layers[J]. Microsystem Technologies. 2014, 20(4): 653-662.
    [70] Zhang R, Tian Y H, Hang C J, et al. Formation mechanism and orientation of Cu3Sn grains in Cu-Sn intermetallic compound joints[J]. Materials Letters, 2013, 110(11): 137-140.
    [71] 田艳红, 王 宁, 杨东升, 等. 三维封装芯片键合IMC焊点应力分析及结构优化[J]. 焊接学报, 2012, 33(8): 17-20. Tian Yanhong, Wang Ning, Yang Dongsheng, et al. Stress analysis and structure optimization of IMC joints in 3D package[J]. Transactions of the China Welding Institution, 2012, 33(8): 17-20.
    [72] Li J F, Agyakwa P A, Johnson C M. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process[J]. Acta Materialia, 2011, 59(3): 1198-1211.
    [73] Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(1): 143-147.
    [74] Ohnuma I, Kainuma R, Ishida K. Development of heat rsistantPb-free joints by TLPS process of Ag and Sn-Bi-Ag alloypowders[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2012, 48(3)B: 413-418.
    [75] Quintero P O, McCluskey F P. Silver-indium transient liquid phase sintering for high temperature die attachment[J]. Journal of Micro Electronics and Electronic Packaging, 2009, 6(1): 66-74.
    [76] Greve H, McCluskey F P. Transient liquid phase sintered joints for power electeronicmodulese[C]//International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Inter PACK 2013, Burlingame: IEEE, 2013:V001T01A004, 1-8.
    [77] Lang F Q, Yamaguchi H, Nakagawa H. High temperature resistant joint technology for SiCpower devices using transient liquid phase sintering[C]//Process 2012 International Conference on Electronic Packaging Technology & High Density Packaging.Guilin:IEEE,2012:157-161.
    [78] Lang F Q, Yamaguchi H, Nakagawa H, et al. Thermally stable bonding of SiC devices with ceramic substrates: transientliquid phase sintering using Cu/Sn powders[J]. Journal of the Electrochemical Society, 2013, 160(8): 315-319.
计量
  • 文章访问数:  975
  • HTML全文浏览量:  8
  • PDF下载量:  879
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14

目录

    /

    返回文章
    返回