高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新一代功率芯片耐高温封装连接国内外发展评述

冯洪亮 黄继华 陈树海 赵兴科

冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
引用本文: 冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.
Citation: FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.

新一代功率芯片耐高温封装连接国内外发展评述

基金项目: 国家自然科学基金资助项目(51474026)

Review on high temperature resistant packaging technology for new genetation power semiconductor devices

  • 摘要: 新一代半导体高温功率芯片可在500 ℃左右甚至更高的温度下服役,耐高温封装已成为其高温应用的主要障碍. 针对当前高温功率芯片耐高温封装连接问题,从芯片耐高温封装连接的结构及要求、芯片的耐高温封装连接方法(包括高温无铅钎料封装连接、银低温烧结连接、固液互扩散连接和瞬时液相烧结连接)及存在的问题等方面对国内外研究现状、动态进行了分析和评述,并提出了今后高温功率芯片耐高温封装连接的研究重点和发展方向.
  • [1] Neudeck P G, Spry D J, Chen L Y, et al. Stable electrical operation of 6H-SiC JFETs and ICs for thousands of hours at 500 ℃[J]. IEEE Electron Device Letters, 2008, 29(5): 456-459.
    [2] Alexandru M, Banu V, Vellvehi M, et al. Design of digital electronics for high temperature using basic logic gates made of 4H-SiC MESFETs[J]. Materials Science Forum, 2012, 711: 104-108.
    [3] Iwasaki T, Hoshino Y, Tsuzuki K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177.
    [4] Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 ℃ operational amplifier in 4H-SiC bipolar technology[J].IEEE Electron Device Letters, 2014, 35(7): 693-695.
    [5] Le-Huu M, Schmitt H, Noll S, et al. Investigation of the reliability of 4H-SiC MOS devices for hightemperature applications[J].Micro-electronics Reliability, 2011, 51(3): 1346-1350.
    [6] Casals O, Becker T, Godignon P, et al. SiC-based MIS gas sensor for high water vapor environments[J]. Sensors and Actuators B:Chemical, 2012, 175(12): 60-66.
    [7] Maier D, Alomari M, Grandjean N, et al. InAlN/GaN HEMTs for operation in the 1 000 ℃ regime: a first experiment[J]. IEEE Electron Device Letters, 2012, 33(7): 985-987.
    [8] Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Engineering Sciences, 2012, 10(5): 36-41.
    [9] Yang J. A Harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719-2734.
    [10] Chin H S, Cheong K Y, Ismail A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transaction B, 2010, 41(8): 824-831.
    [11] 张 波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望[J]. 中国电子科学院学报, 2009, 4(2): 112-118. Zhang Bo, Deng Xiaochuan, Zhang Yourun, et al. Recent development and future perspective of silicon carbide power devices—opportunity and challenge[J]. Journal of CAE IT, 2009, 4(2): 112-118.
    [12] Coppola L, Huff D, Wang F, et al. Survey on high-temperature packaging materials for SiC-based power electronics modules[C]//Power Electronics Specialists Conference(PESC), Orlando: IEEE, 2007: 2234-2240.
    [13] Jürgen S H. Advantages and new development of direct bonded copper substrates[J]. Microelectronics Reliability, 2003, 43(3): 359-365.
    [14] He H, Fu R L, Wang D L, et al. A new method for preparation of direct bonding copper substrate on Al2O3[J]. Materials Letters, 2007, 61(1): 4131-4133.
    [15] Tollefsen T A, Larsson A, Løvik O M, et al. Au-Sn SLID bonding-properties and possibilities[J]. Metallurgical and Materials Transaction B, 2012, 43(12): 397-405.
    [16] Tollefsen T A, Løvik O M, Aasmundtveit K, et al. Communication effect of temperature on the die shear strength of a Au-Sn SLID bond[J]. Metallurgical and Materials Transaction A, 2013, 44(4): 2914-2916.
    [17] Tollefsen T A, Larsson A, Taklo M M V, et al. Au-Sn SLID bonding: areliable HT interconnect and die attach technology[J]. Metallurgical and Materials Transaction B, 2013, 44(1): 406-413.
    [18] Xu H, Suni T, Vuorinen V, et al. Wafer-level SLID bonding for MEMS encapsulation[J]. International Journal of Advanced Manufacturing Technologies, 2013, 1(3): 226-235.
    [19] 黄明亮, 周少明, 陈雷达, 等. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86. Huang Mingliang, Zhou Shaoming, Chen Leida, et al. Effect of elctroless Ni-P consumption on the failure mechanism of solder joints during electromigration[J]. Acta Metallurgica Sinica, 2013, 49(1): 81-86.
    [20] Ho C E , Hsieh W Z, Yang T H. Depletion andphase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu[J]. Electronnic Materials Letters, 2015, 11(1): 155-163.
    [21] Mustain H A, Brown W D, Ang S S. Transient liquid phase die attach for high-temperature silicon carbide power devices[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(3): 563-570.
    [22] Kang N, Na H S, Kim S J, et al. Alloy design of Zn-Al-Cu solder for ultra hightemperatures[J]. Journal of Alloys and Compounds, 2009, 467(1/2): 246-250.
    [23] Kim S J, Kim K S, Kim S S, et al. Characteristics of Zn-Al-Cu alloys for high temperature solder application[J]. Materials Transactions, 2008, 49(7): 1531-1536.
    [24] Gancarz T, Pstrus'J, Fima P, et al. Thermal properties and wetting behavior of high temperature Zn-Al-In solders[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 599-605.
    [25] Haque A, Lim B H, Haseeb A S M A, et al. Die attach properties of Zn-Al-Mg-Ga based high-temperature lead-free solder on Cu lead-frame[J]. Journal of Materials Science: Mater Electron. 2012, 23(9): 115-123.
    [26] Shimizu T, Ishikawa H, Ohuma I, et al. Zn-Al-Mg-Ga alloys as Pb-Free solder for die-attaching use[J]. Journal of Electronic Materials, 1999, 28 (11): 1172-1175.
    [27] Cheng F, Gao F, Wang Y, et al. Sn addition on the tensile properties of high temperature Zn-4Al-3Mg solder alloys[J]. Microelectronics Reliability, 2012, 52(3): 579-584.
    [28] Tanimoto S, Matsui K, Yusuke Z, et al. Eutectic Zn-Al die attachment for higher Tj SiC power applications: fabrication method and die shear strength reliability[J]. Journal of Microelectronics and Electronic Packaging, 2013, 10(2): 59-66.
    [29] Tanimoto S, Matsui K, Yusuke Z, et al. Common metal die attachment for SiC power devices operated in an extended junction temperture range[J]. Material Science, 2012, 717/720(9): 853-856.
    [30] Kim S, Kim K S, Suganuma K, et al. Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates[J]. Journal of Electronal Materials, 2009, 38(6): 873-83.
    [31] Yost F G, Karnowsky M M, Drotning W D, et al. Thermal expansion and elastic properties of high gold-tin alloys[J]. Metallurgical and Transactions A, 1990, 21A: 1885-1889.
    [32] 韦小凤, 王 檬, 王日初, 等. AuSn钎料及AuSn/Ni焊点的组织性能研究[J]. 稀有金属材料与工程, 2013, 42(3): 639-643. Wei Xiaofeng, Wang Meng,Wang Richu, et al. Microstructure and properties of AuSn solder and AuSn/Ni joint[J]. Rare Metal Materials and Engineering, 2013, 42(3): 639-643.
    [33] Wei X F, Wang R C, Peng C Q, et al. Interfacial reaction and shear strength of AuSn20/Ni solder joints[J].The Chinese Journal of Nonferrous Metals, 2013, 23(7): 1907-1913.
    [34] Wei X F, Zhang Y K, Wang R C, et al. Microstructural evolution and shear strength of AuSn20/Ni single lap solder joints[J]. Microelectronics Reliability, 2013, 53(2): 748-754.
    [35] Chung H M, Chen C M, Lin C P, et al. Microstructural evolution of the Au-20%Sn solder on the Cu substrate during reflow[J]. Journal of Alloys and Compounds, 2009, 485(6): 219-224.
    [36] Lang F, Nakagawa H, Yamaguchi H. Soldering of non-wettable Al electrode using Au-based solder[J]. Gold Bull, 2014, 47(11): 109-118.
    [37] Zhang G S, Jing H Y, Xu L Y, et al. Creep behavior of eutectic 80Au/20Sn solder alloy[J]. Journal of Alloys and Compounds, 2009, 476(5): 138-141.
    [38] Chidambaram V, Hald J, Hattel J. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders[J]. Journal of Alloys and Compounds, 2010, 490(2): 170-179.
    [39] Chidambaram V, Yeung H B, Shan G. Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics[J]. Journal of Electronic Materials, 2012, 41(8): 2107-2116.
    [40] Lalena J N, Dean N F, Weiser M W, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attach-ment[J]. Journal of Electronic Materials, 2002, 31(11): 1244-1249.
    [41] Shi Y, Fang W, Xia Z, et al. Investigation of rare earth-doped Bi-Ag high-temperature solders[J]. Journal of Materials Science: Materialsin Electronics, 2010, 21(7): 875-881.
    [42] Song J M, Chuang H Y, Wen T X. Thermal and tensile properties of Bi-Ag alloys[J]. Metallurgical and Materials Transaction A, 2007, 38A(6): 1371-1375.
    [43] El-Daly A A, Swilem Y, Hammad A E. Creep properties of Sn-Sb based lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009,471(3): 98-104.
    [44] El-Daly A A, Fawzyb A, Mohamada A Z, et al. Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu[J]. Journal of Alloys and Compounds, 2011, 509(13): 4574-4582.
    [45] Zeng Q, Guo J, Gu X, et al. Wetting behaviors and interfacial reaction between Sn-10Sb-5Cu high temperature lead-free solder and Cu substrate[J]. Journal of Materials Science & Technology, 2010, 26(2): 156-162.
    [46] Plevachuk Yu, Hoyer W, Kaban I, et al. Experimental study of density, surface tension, and contact angle of Sn-Sb-based alloys for high temperature soldering[J]. Journal of Materials Science, 2010, 45(8): 2051-2056.
    [47] Kim J H, Jeong S W, Lee H M. Thermodynamics-aided alloy design and evaluation of Pb-free solders for high-temperature applications[J]. Materials Transaction, 2002, 43(8): 1873-1878
    [48] Kolenňák R, Martinkovic M, Koleń Aková M.Shear strength and DSC analysis of high-temperature solders[J].Archives of Metallurgy and Materials, 2013, 58(2): 529-533.
    [49] Suganuma K, Kim S J, Kim K S. High-temperature lead-free solders: properties and possibilities[J]. Journal of the Minerals Metals & Materials Society, 2009, 61(1): 64-71.
    [50] Schwarzbauer H, Kuhnert R. Novel large area joining technique for improved power device performance[C]//IEEE Industry Applications Society Annual Meeting, San Diego: Conference Record of the IEEE, 1989: 1348-1351.
    [51] Schwarzbauer H. Method of securing electroniccomponents to a substrate: united states, 4810672[P]. 1989-03-07.
    [52] Schwarzbauer H, Kuhnert R. Novel large area joining technique forimproved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 21(1): 93-95.
    [53] Zhang Z, Lu G Q. Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25(4): 279-283.
    [54] Amro R, Lutz J, Rudzki J, et al. Power cycling at high temperature swings of modules with low temperature joining technique[C]//International Symposium on Power Semiconductor Devices and IC’s(ISPSD 2006), Naples, Italy: IEEE, 2006:1-4.
    [55] Ide E, Angata S, Hirose A, et al. Meta-lmetal bonding processusing Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393.
    [56] Bai J G, Lu G Q. Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly[J]. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 436-441.
    [57] Riva R, Buttay C, Allard B, et al. Migration issues in sintered-silver die attaches operating at high temperature[J]. Microelectronics Reliability, 2013, 53(9/11): 1592-1596.
    [58] Lei T G, Calata J N, Lu G Q, et al. Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technology, 2010, 33(1): 98-104.
    [59] Zheng H, Berry D, Calata J, et al. Low-pressure joining of large-area devices on copper using nanosilverpaste[J]. IEEE Transactions On Components, Packaging and Manufacturing Technology, 2013, 3(6): 915-921.
    [60] Morisada Y, Nagaoka T, Fukusumi M, et al. A low-temperature bonding process using mixed Cu-Ag nanoparticles[J]. Journal Electronic Materials, 2010, 39(8): 1283-1288.
    [61] Ishizaki T, Satoh T, Kuno A, et al. Thermal characterizations of Cu nanoparticle joints for power semiconductor devices[J]. Microelectronics Reliability, 2013, 53(9/11): 1543-1547.
    [62] Yan J F, Zou G S, Wu A P, et al. Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application[J]. Journal of Electeronic Materials, 2012, 41(7): 1886-1892.
    [63] 张颖川, 闫剑锋, 邹贵生, 等. 纳米银与纳米铜混合焊膏用于电子封装低温烧结连接[J]. 焊接学报, 2013, 34(8): 17-22. Zhang Yingchuan, Yan Jianfeng, Zou Guisheng, et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of the China Welding Institution, 2013, 34(8): 17-22.
    [64] Suganuma K, Sakamoto S, Kagami N, et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 2012, 52(2): 375-380.
    [65] Li X, Chen G, Wang L, et al. Creep properties of low-temperature sintered nano-silverlap shear joints[J]. Materials Science & Engineering A, 2013, 579(1): 108-113.
    [66] Bernstein L. Semiconductor joining by the solid-liquid-interdiffusion (SLID) process[J]. Journal of the Electrochemical Society, 1966, 113(10): 1282-1288.
    [67] Tian Y H, Wang N, Li Y, et al. Mechanism of low temperature Cu-In solid-liquid interdiffusionbonding in 3D package[C]//2012 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Guilin, 2012: 216-218.
    [68] Li J F, Agyakwa P A, Johnson C M. Suitable Thicknesses of base metal and interlayer, andevolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment[J]. Journal of Electronic Materials, 2014, 43(4): 983-995.
    [69] Flötgen C, Pawlak M, Pabo E, et al. Wafer bonding using Cu-Sn intermetallic bonding layers[J]. Microsystem Technologies. 2014, 20(4): 653-662.
    [70] Zhang R, Tian Y H, Hang C J, et al. Formation mechanism and orientation of Cu3Sn grains in Cu-Sn intermetallic compound joints[J]. Materials Letters, 2013, 110(11): 137-140.
    [71] 田艳红, 王 宁, 杨东升, 等. 三维封装芯片键合IMC焊点应力分析及结构优化[J]. 焊接学报, 2012, 33(8): 17-20. Tian Yanhong, Wang Ning, Yang Dongsheng, et al. Stress analysis and structure optimization of IMC joints in 3D package[J]. Transactions of the China Welding Institution, 2012, 33(8): 17-20.
    [72] Li J F, Agyakwa P A, Johnson C M. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process[J]. Acta Materialia, 2011, 59(3): 1198-1211.
    [73] Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(1): 143-147.
    [74] Ohnuma I, Kainuma R, Ishida K. Development of heat rsistantPb-free joints by TLPS process of Ag and Sn-Bi-Ag alloypowders[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2012, 48(3)B: 413-418.
    [75] Quintero P O, McCluskey F P. Silver-indium transient liquid phase sintering for high temperature die attachment[J]. Journal of Micro Electronics and Electronic Packaging, 2009, 6(1): 66-74.
    [76] Greve H, McCluskey F P. Transient liquid phase sintered joints for power electeronicmodulese[C]//International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Inter PACK 2013, Burlingame: IEEE, 2013:V001T01A004, 1-8.
    [77] Lang F Q, Yamaguchi H, Nakagawa H. High temperature resistant joint technology for SiCpower devices using transient liquid phase sintering[C]//Process 2012 International Conference on Electronic Packaging Technology & High Density Packaging.Guilin:IEEE,2012:157-161.
    [78] Lang F Q, Yamaguchi H, Nakagawa H, et al. Thermally stable bonding of SiC devices with ceramic substrates: transientliquid phase sintering using Cu/Sn powders[J]. Journal of the Electrochemical Society, 2013, 160(8): 315-319.
  • [1] 隋然, 林巧力.  SnAgCu-xTi在单晶硅表面的润湿行为 . 焊接学报, 2020, 41(4): 90-96. doi: 10.12073/j.hjxb.20191122001
    [2] 杨宗辉, 沈以赴, 初雅杰, 成家林, 李晓泉.  钴/镍复合中间层真空扩散连接钨与钢 . 焊接学报, 2020, 41(3): 54-58. doi: 10.12073/j.hjxb.20190823003
    [3] 蔡小强,王颖,杨振文,王东坡.  Ti2AlNb合金瞬时液相扩散连接接头界面组织及性能分析 . 焊接学报, 2018, 39(2): -. doi: 10.12073/j.hjxb.2018390034
    [4] 张颖川, 闫剑锋, 邹贵生, 白海林, 刘磊, 闫久春, ZHOUYunhong, 吴爱萍.  纳米银与纳米铜混合焊膏用于电子封装低温烧结连接 . 焊接学报, 2013, (8): 17-21.
    [5] 陈彪, 史铁林, 廖广兰, 张帅谋.  Zr41Ti14Cu12.5Ni10Be22.5非晶棒料摩擦焊接 . 焊接学报, 2013, (11): 45-48.
    [6] 林铁松, 何鹏, 韩冷, 韩春, 黄玉东, 钱国统.  GH99合金液相扩散连接界面组织分析 . 焊接学报, 2012, (3): 25-28.
    [7] 袁新建, 罗军, 唐昆仑, 李佳, KANGChungyun.  双相不锈钢瞬时液相连接接头的组织结构及等温凝固模拟 . 焊接学报, 2012, (12): 49-52.
    [8] 唐恒娟, 陈思杰.  异种耐热钢瞬时液相扩散连接界面形态与形成机理 . 焊接学报, 2012, (3): 101-104.
    [9] 张伟华, 邱小明, 陈晓伟, 赵熹华, 孙大千, 李永强.  Al-Si合金瞬间液相扩散连接接头组织与力学性能 . 焊接学报, 2009, (2): 121-124.
    [10] 刘世程, 陈汝淑, 刘德义.  白铜/钢双金属管的瞬间液相扩散连接 . 焊接学报, 2007, (1): 21-24.
    [11] 王学刚, 严黔, 李辛庚.  双温工艺瞬时液相扩散连接45MnMoB地质钻杆 . 焊接学报, 2007, (5): 53-56.
    [12] 申艳丽, 孟庆森, MunirZA, 辛立军, 胡利方.  FASHS技术制备TiB2+Ni/Ni3Al/405不锈钢梯度材料 . 焊接学报, 2007, (8): 25-28,32.
    [13] 井晓天, 陈思杰, 卢俊峰, 李辛庚.  TP304H/12Cr1MoV异种钢管的瞬时液相扩散连接 . 焊接学报, 2006, (2): 97-101.
    [14] 沈以赴, 刘仕福, 李军伟, 徐杰.  W与Cu合金瞬时液相连接分析 . 焊接学报, 2005, (12): 73-76.
    [15] 王学刚, 严黔, 李辛庚.  20钢管高温钎焊与瞬时液相扩散焊接组织与性能 . 焊接学报, 2005, (5): 56-60.
    [16] 陈思杰, 井晓天, 李辛庚.  瞬时液相扩散连接的双温工艺模型 . 焊接学报, 2005, (4): 69-72.
    [17] 曹健, 冯吉才, 李卓然.  采用自蔓延高温合成技术连接TiAl合金 . 焊接学报, 2005, (11): 5-7.
    [18] 陈思杰, 井晓天, 李辛庚.  T91钢管瞬时液相扩散焊接 . 焊接学报, 2004, (6): 73-76.
    [19] 孙凤莲, 陈捷, 张杰, 冯吉才, 吴培莲.  金刚石厚膜与硬质合金的连接 . 焊接学报, 1999, (1): 45-49.
    [20] 孙凤莲, 于彦东, 孙平忠, 张杰, 张九海, 徐永华.  金刚石与Co-Si合金的固相连接 . 焊接学报, 1997, (3): 177-181.
  • 加载中
计量
  • 文章访问数:  761
  • HTML全文浏览量:  1
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-15

新一代功率芯片耐高温封装连接国内外发展评述

    基金项目:  国家自然科学基金资助项目(51474026)

摘要: 新一代半导体高温功率芯片可在500 ℃左右甚至更高的温度下服役,耐高温封装已成为其高温应用的主要障碍. 针对当前高温功率芯片耐高温封装连接问题,从芯片耐高温封装连接的结构及要求、芯片的耐高温封装连接方法(包括高温无铅钎料封装连接、银低温烧结连接、固液互扩散连接和瞬时液相烧结连接)及存在的问题等方面对国内外研究现状、动态进行了分析和评述,并提出了今后高温功率芯片耐高温封装连接的研究重点和发展方向.

English Abstract

冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
引用本文: 冯洪亮, 黄继华, 陈树海, 赵兴科. 新一代功率芯片耐高温封装连接国内外发展评述[J]. 焊接学报, 2016, 37(1): 120-128.
FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.
Citation: FENG Hongliang, HUANG Jihua, CHEN Shuhai, ZHAO Xingke. Review on high temperature resistant packaging technology for new genetation power semiconductor devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 120-128.
参考文献 (78)

目录

    /

    返回文章
    返回