[1] |
Neudeck P G, Spry D J, Chen L Y, et al. Stable electrical operation of 6H-SiC JFETs and ICs for thousands of hours at 500 ℃[J]. IEEE Electron Device Letters, 2008, 29(5): 456-459.
|
[2] |
Alexandru M, Banu V, Vellvehi M, et al. Design of digital electronics for high temperature using basic logic gates made of 4H-SiC MESFETs[J]. Materials Science Forum, 2012, 711: 104-108.
|
[3] |
Iwasaki T, Hoshino Y, Tsuzuki K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177.
|
[4] |
Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 ℃ operational amplifier in 4H-SiC bipolar technology[J].IEEE Electron Device Letters, 2014, 35(7): 693-695.
|
[5] |
Le-Huu M, Schmitt H, Noll S, et al. Investigation of the reliability of 4H-SiC MOS devices for hightemperature applications[J].Micro-electronics Reliability, 2011, 51(3): 1346-1350.
|
[6] |
Casals O, Becker T, Godignon P, et al. SiC-based MIS gas sensor for high water vapor environments[J]. Sensors and Actuators B:Chemical, 2012, 175(12): 60-66.
|
[7] |
Maier D, Alomari M, Grandjean N, et al. InAlN/GaN HEMTs for operation in the 1 000 ℃ regime: a first experiment[J]. IEEE Electron Device Letters, 2012, 33(7): 985-987.
|
[8] |
Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Engineering Sciences, 2012, 10(5): 36-41.
|
[9] |
Yang J. A Harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719-2734.
|
[10] |
Chin H S, Cheong K Y, Ismail A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transaction B, 2010, 41(8): 824-831.
|
[11] |
张 波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望[J]. 中国电子科学院学报, 2009, 4(2): 112-118. Zhang Bo, Deng Xiaochuan, Zhang Yourun, et al. Recent development and future perspective of silicon carbide power devices—opportunity and challenge[J]. Journal of CAE IT, 2009, 4(2): 112-118.
|
[12] |
Coppola L, Huff D, Wang F, et al. Survey on high-temperature packaging materials for SiC-based power electronics modules[C]//Power Electronics Specialists Conference(PESC), Orlando: IEEE, 2007: 2234-2240.
|
[13] |
Jürgen S H. Advantages and new development of direct bonded copper substrates[J]. Microelectronics Reliability, 2003, 43(3): 359-365.
|
[14] |
He H, Fu R L, Wang D L, et al. A new method for preparation of direct bonding copper substrate on Al2O3[J]. Materials Letters, 2007, 61(1): 4131-4133.
|
[15] |
Tollefsen T A, Larsson A, Løvik O M, et al. Au-Sn SLID bonding-properties and possibilities[J]. Metallurgical and Materials Transaction B, 2012, 43(12): 397-405.
|
[16] |
Tollefsen T A, Løvik O M, Aasmundtveit K, et al. Communication effect of temperature on the die shear strength of a Au-Sn SLID bond[J]. Metallurgical and Materials Transaction A, 2013, 44(4): 2914-2916.
|
[17] |
Tollefsen T A, Larsson A, Taklo M M V, et al. Au-Sn SLID bonding: areliable HT interconnect and die attach technology[J]. Metallurgical and Materials Transaction B, 2013, 44(1): 406-413.
|
[18] |
Xu H, Suni T, Vuorinen V, et al. Wafer-level SLID bonding for MEMS encapsulation[J]. International Journal of Advanced Manufacturing Technologies, 2013, 1(3): 226-235.
|
[19] |
黄明亮, 周少明, 陈雷达, 等. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86. Huang Mingliang, Zhou Shaoming, Chen Leida, et al. Effect of elctroless Ni-P consumption on the failure mechanism of solder joints during electromigration[J]. Acta Metallurgica Sinica, 2013, 49(1): 81-86.
|
[20] |
Ho C E , Hsieh W Z, Yang T H. Depletion andphase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu[J]. Electronnic Materials Letters, 2015, 11(1): 155-163.
|
[21] |
Mustain H A, Brown W D, Ang S S. Transient liquid phase die attach for high-temperature silicon carbide power devices[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(3): 563-570.
|
[22] |
Kang N, Na H S, Kim S J, et al. Alloy design of Zn-Al-Cu solder for ultra hightemperatures[J]. Journal of Alloys and Compounds, 2009, 467(1/2): 246-250.
|
[23] |
Kim S J, Kim K S, Kim S S, et al. Characteristics of Zn-Al-Cu alloys for high temperature solder application[J]. Materials Transactions, 2008, 49(7): 1531-1536.
|
[24] |
Gancarz T, Pstrus'J, Fima P, et al. Thermal properties and wetting behavior of high temperature Zn-Al-In solders[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 599-605.
|
[25] |
Haque A, Lim B H, Haseeb A S M A, et al. Die attach properties of Zn-Al-Mg-Ga based high-temperature lead-free solder on Cu lead-frame[J]. Journal of Materials Science: Mater Electron. 2012, 23(9): 115-123.
|
[26] |
Shimizu T, Ishikawa H, Ohuma I, et al. Zn-Al-Mg-Ga alloys as Pb-Free solder for die-attaching use[J]. Journal of Electronic Materials, 1999, 28 (11): 1172-1175.
|
[27] |
Cheng F, Gao F, Wang Y, et al. Sn addition on the tensile properties of high temperature Zn-4Al-3Mg solder alloys[J]. Microelectronics Reliability, 2012, 52(3): 579-584.
|
[28] |
Tanimoto S, Matsui K, Yusuke Z, et al. Eutectic Zn-Al die attachment for higher Tj SiC power applications: fabrication method and die shear strength reliability[J]. Journal of Microelectronics and Electronic Packaging, 2013, 10(2): 59-66.
|
[29] |
Tanimoto S, Matsui K, Yusuke Z, et al. Common metal die attachment for SiC power devices operated in an extended junction temperture range[J]. Material Science, 2012, 717/720(9): 853-856.
|
[30] |
Kim S, Kim K S, Suganuma K, et al. Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates[J]. Journal of Electronal Materials, 2009, 38(6): 873-83.
|
[31] |
Yost F G, Karnowsky M M, Drotning W D, et al. Thermal expansion and elastic properties of high gold-tin alloys[J]. Metallurgical and Transactions A, 1990, 21A: 1885-1889.
|
[32] |
韦小凤, 王 檬, 王日初, 等. AuSn钎料及AuSn/Ni焊点的组织性能研究[J]. 稀有金属材料与工程, 2013, 42(3): 639-643. Wei Xiaofeng, Wang Meng,Wang Richu, et al. Microstructure and properties of AuSn solder and AuSn/Ni joint[J]. Rare Metal Materials and Engineering, 2013, 42(3): 639-643.
|
[33] |
Wei X F, Wang R C, Peng C Q, et al. Interfacial reaction and shear strength of AuSn20/Ni solder joints[J].The Chinese Journal of Nonferrous Metals, 2013, 23(7): 1907-1913.
|
[34] |
Wei X F, Zhang Y K, Wang R C, et al. Microstructural evolution and shear strength of AuSn20/Ni single lap solder joints[J]. Microelectronics Reliability, 2013, 53(2): 748-754.
|
[35] |
Chung H M, Chen C M, Lin C P, et al. Microstructural evolution of the Au-20%Sn solder on the Cu substrate during reflow[J]. Journal of Alloys and Compounds, 2009, 485(6): 219-224.
|
[36] |
Lang F, Nakagawa H, Yamaguchi H. Soldering of non-wettable Al electrode using Au-based solder[J]. Gold Bull, 2014, 47(11): 109-118.
|
[37] |
Zhang G S, Jing H Y, Xu L Y, et al. Creep behavior of eutectic 80Au/20Sn solder alloy[J]. Journal of Alloys and Compounds, 2009, 476(5): 138-141.
|
[38] |
Chidambaram V, Hald J, Hattel J. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders[J]. Journal of Alloys and Compounds, 2010, 490(2): 170-179.
|
[39] |
Chidambaram V, Yeung H B, Shan G. Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics[J]. Journal of Electronic Materials, 2012, 41(8): 2107-2116.
|
[40] |
Lalena J N, Dean N F, Weiser M W, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attach-ment[J]. Journal of Electronic Materials, 2002, 31(11): 1244-1249.
|
[41] |
Shi Y, Fang W, Xia Z, et al. Investigation of rare earth-doped Bi-Ag high-temperature solders[J]. Journal of Materials Science: Materialsin Electronics, 2010, 21(7): 875-881.
|
[42] |
Song J M, Chuang H Y, Wen T X. Thermal and tensile properties of Bi-Ag alloys[J]. Metallurgical and Materials Transaction A, 2007, 38A(6): 1371-1375.
|
[43] |
El-Daly A A, Swilem Y, Hammad A E. Creep properties of Sn-Sb based lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009,471(3): 98-104.
|
[44] |
El-Daly A A, Fawzyb A, Mohamada A Z, et al. Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu[J]. Journal of Alloys and Compounds, 2011, 509(13): 4574-4582.
|
[45] |
Zeng Q, Guo J, Gu X, et al. Wetting behaviors and interfacial reaction between Sn-10Sb-5Cu high temperature lead-free solder and Cu substrate[J]. Journal of Materials Science & Technology, 2010, 26(2): 156-162.
|
[46] |
Plevachuk Yu, Hoyer W, Kaban I, et al. Experimental study of density, surface tension, and contact angle of Sn-Sb-based alloys for high temperature soldering[J]. Journal of Materials Science, 2010, 45(8): 2051-2056.
|
[47] |
Kim J H, Jeong S W, Lee H M. Thermodynamics-aided alloy design and evaluation of Pb-free solders for high-temperature applications[J]. Materials Transaction, 2002, 43(8): 1873-1878
|
[48] |
Kolenňák R, Martinkovic M, Koleń Aková M.Shear strength and DSC analysis of high-temperature solders[J].Archives of Metallurgy and Materials, 2013, 58(2): 529-533.
|
[49] |
Suganuma K, Kim S J, Kim K S. High-temperature lead-free solders: properties and possibilities[J]. Journal of the Minerals Metals & Materials Society, 2009, 61(1): 64-71.
|
[50] |
Schwarzbauer H, Kuhnert R. Novel large area joining technique for improved power device performance[C]//IEEE Industry Applications Society Annual Meeting, San Diego: Conference Record of the IEEE, 1989: 1348-1351.
|
[51] |
Schwarzbauer H. Method of securing electroniccomponents to a substrate: united states, 4810672[P]. 1989-03-07.
|
[52] |
Schwarzbauer H, Kuhnert R. Novel large area joining technique forimproved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 21(1): 93-95.
|
[53] |
Zhang Z, Lu G Q. Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25(4): 279-283.
|
[54] |
Amro R, Lutz J, Rudzki J, et al. Power cycling at high temperature swings of modules with low temperature joining technique[C]//International Symposium on Power Semiconductor Devices and IC’s(ISPSD 2006), Naples, Italy: IEEE, 2006:1-4.
|
[55] |
Ide E, Angata S, Hirose A, et al. Meta-lmetal bonding processusing Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393.
|
[56] |
Bai J G, Lu G Q. Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly[J]. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 436-441.
|
[57] |
Riva R, Buttay C, Allard B, et al. Migration issues in sintered-silver die attaches operating at high temperature[J]. Microelectronics Reliability, 2013, 53(9/11): 1592-1596.
|
[58] |
Lei T G, Calata J N, Lu G Q, et al. Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technology, 2010, 33(1): 98-104.
|
[59] |
Zheng H, Berry D, Calata J, et al. Low-pressure joining of large-area devices on copper using nanosilverpaste[J]. IEEE Transactions On Components, Packaging and Manufacturing Technology, 2013, 3(6): 915-921.
|
[60] |
Morisada Y, Nagaoka T, Fukusumi M, et al. A low-temperature bonding process using mixed Cu-Ag nanoparticles[J]. Journal Electronic Materials, 2010, 39(8): 1283-1288.
|
[61] |
Ishizaki T, Satoh T, Kuno A, et al. Thermal characterizations of Cu nanoparticle joints for power semiconductor devices[J]. Microelectronics Reliability, 2013, 53(9/11): 1543-1547.
|
[62] |
Yan J F, Zou G S, Wu A P, et al. Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application[J]. Journal of Electeronic Materials, 2012, 41(7): 1886-1892.
|
[63] |
张颖川, 闫剑锋, 邹贵生, 等. 纳米银与纳米铜混合焊膏用于电子封装低温烧结连接[J]. 焊接学报, 2013, 34(8): 17-22. Zhang Yingchuan, Yan Jianfeng, Zou Guisheng, et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of the China Welding Institution, 2013, 34(8): 17-22.
|
[64] |
Suganuma K, Sakamoto S, Kagami N, et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 2012, 52(2): 375-380.
|
[65] |
Li X, Chen G, Wang L, et al. Creep properties of low-temperature sintered nano-silverlap shear joints[J]. Materials Science & Engineering A, 2013, 579(1): 108-113.
|
[66] |
Bernstein L. Semiconductor joining by the solid-liquid-interdiffusion (SLID) process[J]. Journal of the Electrochemical Society, 1966, 113(10): 1282-1288.
|
[67] |
Tian Y H, Wang N, Li Y, et al. Mechanism of low temperature Cu-In solid-liquid interdiffusionbonding in 3D package[C]//2012 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Guilin, 2012: 216-218.
|
[68] |
Li J F, Agyakwa P A, Johnson C M. Suitable Thicknesses of base metal and interlayer, andevolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment[J]. Journal of Electronic Materials, 2014, 43(4): 983-995.
|
[69] |
Flötgen C, Pawlak M, Pabo E, et al. Wafer bonding using Cu-Sn intermetallic bonding layers[J]. Microsystem Technologies. 2014, 20(4): 653-662.
|
[70] |
Zhang R, Tian Y H, Hang C J, et al. Formation mechanism and orientation of Cu3Sn grains in Cu-Sn intermetallic compound joints[J]. Materials Letters, 2013, 110(11): 137-140.
|
[71] |
田艳红, 王 宁, 杨东升, 等. 三维封装芯片键合IMC焊点应力分析及结构优化[J]. 焊接学报, 2012, 33(8): 17-20. Tian Yanhong, Wang Ning, Yang Dongsheng, et al. Stress analysis and structure optimization of IMC joints in 3D package[J]. Transactions of the China Welding Institution, 2012, 33(8): 17-20.
|
[72] |
Li J F, Agyakwa P A, Johnson C M. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process[J]. Acta Materialia, 2011, 59(3): 1198-1211.
|
[73] |
Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(1): 143-147.
|
[74] |
Ohnuma I, Kainuma R, Ishida K. Development of heat rsistantPb-free joints by TLPS process of Ag and Sn-Bi-Ag alloypowders[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2012, 48(3)B: 413-418.
|
[75] |
Quintero P O, McCluskey F P. Silver-indium transient liquid phase sintering for high temperature die attachment[J]. Journal of Micro Electronics and Electronic Packaging, 2009, 6(1): 66-74.
|
[76] |
Greve H, McCluskey F P. Transient liquid phase sintered joints for power electeronicmodulese[C]//International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Inter PACK 2013, Burlingame: IEEE, 2013:V001T01A004, 1-8.
|
[77] |
Lang F Q, Yamaguchi H, Nakagawa H. High temperature resistant joint technology for SiCpower devices using transient liquid phase sintering[C]//Process 2012 International Conference on Electronic Packaging Technology & High Density Packaging.Guilin:IEEE,2012:157-161.
|
[78] |
Lang F Q, Yamaguchi H, Nakagawa H, et al. Thermally stable bonding of SiC devices with ceramic substrates: transientliquid phase sintering using Cu/Sn powders[J]. Journal of the Electrochemical Society, 2013, 160(8): 315-319.
|