高级检索

外加磁场对镁合金焊接熔池形态的影响

刘政军, 王晓慧, 苏允海

刘政军, 王晓慧, 苏允海. 外加磁场对镁合金焊接熔池形态的影响[J]. 焊接学报, 2016, 37(1): 103-106.
引用本文: 刘政军, 王晓慧, 苏允海. 外加磁场对镁合金焊接熔池形态的影响[J]. 焊接学报, 2016, 37(1): 103-106.
LIU Zhengjun, WANG Xiaohui, SU Yunhai. Effect of magnetic field on shape of magnesium alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 103-106.
Citation: LIU Zhengjun, WANG Xiaohui, SU Yunhai. Effect of magnetic field on shape of magnesium alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 103-106.

外加磁场对镁合金焊接熔池形态的影响

Effect of magnetic field on shape of magnesium alloy weld pool

  • 摘要: 以镁合金焊接熔池为研究对象,建立了移动热源作用下焊接熔池的三维数学模型. 利用大型通用有限元软件ANSYS将电磁场分析结果导入到热流场分析中,实现电磁场和热流场之间的耦合分析. 模拟了无外加磁场作用下以及外加磁场作用下镁合金焊接熔池的温度场分布和流体流动的速度矢量分布. 结果表明,外加磁场产生的电磁力驱动熔池中熔融的液态金属发生旋转运动,改变了液态金属原有的运动方式和传热方式,流体流动速度和流动范围增加,焊缝熔宽增大,熔深减小. 试验结果验证了模拟结果的可靠性.
    Abstract: Taking magnesium alloy weld pool as the research object, a three-dimensional mathematical model of the weld pool under moving heat sources was established. The electromagnetic field analysis is coupled with the heat flow analysis using the finite element software ANSYS. The temperature distribution and the velocity vector distribution of the fluid flow in magnesium alloy weld pool were simulated under the effect of the external magnetic field and without external magnetic field. The simulation results show that the electromagnetic force induced by external magnetic field driving the molten liquid metal occurs a rotary motion, which changed the original movement of liquid metal and heat transfer. The fluid flow velocity and flow range was therefore increased, with increased weld width and reduced depth. The experimental results verify the simulation results.
  • [1] 宗 琳, 苏允海, 刘政军. 磁场参数对镁合金焊接接头力学性 能的影响[J]. 焊接学报, 2012, 33(9): 61-64. Zong Lin, Su Yunhai, Liu Zhengjun. Magnetic field parameters on the mechanical properties of magnesium alloy welded joints[J]. Transactions of the China Welding Institution, 2012, 33(9): 61-64.
    [2] 苏允海, 蒋焕文, 吴德广, 等. 镁合金磁控TIG焊工艺参数的优化设计[J]. 焊接学报, 2012, 33(12): 85-88. Su Yunhai, Jiang Huanwen, Wu Deguang, et al. Optimum design of magnesium alloy welding parameters with GTAW under magnetic field[J]. Transactions of the China Welding Institution, 2012, 33(12): 85-88.
    [3] 江淑园, 郑晓芳. TIG焊外加磁场的ANSYS模拟[J]. 上海交通大学学报, 2008, 42(11): 161-163. Jiang Shuyuan, Zheng Xiaofang. Simulation of the external longitudinal magnetic field in TIG welding[J]. Journal of Shanghai Jiaotong University, 2008, 42(11): 161-163.
    [4] 罗 健, 赵国际, 王向杰. 外加纵向磁场GTAW平板堆焊温度场数值模拟与验证[J]. 热加工工艺, 2010, 39(3): 133-135. Luo Jian, Zhao Guoji, Wang Xiangjie. Numerical simulation and verification of temperature field in GTAW plate surfacing under external longitudinal magnetic field[J]. Hot Working Technology, 2010, 39(3): 133-135.
    [5] 李永兵, 王雅生, 陈关龙, 等. 外加纵向磁场移动焊接熔池流体流和传热耦合分析[J]. 西安交通大学学报, 2003, 37(5): 483-487. Li Yongbing, Wang Yasheng, Chen Guanlong, et al. Coupled analysis of fluid flow and heat transfer in moving weld pool under external longitudinal magnetic field[J]. Journal of Xi'an Jiaotong University, 2003, 37(5): 483-487.
    [6] 赵 明, 武传松, 赵朋成. GTAW熔池形状数值模拟精度的改进[J]. 焊接学报, 2006, 27(3): 17-20. Zhao Ming, Wu Chuansong, Zhao Pengcheng. Improvement of GTAW weld pool shape on the numerical simulation precision[J]. Transactions of the China Welding Institution, 2006, 27(3): 17-20.
    [7] 张玉龙, 赵中魁. 实用轻金属材料手册[M]. 北京: 化学工业出版社, 2006.
计量
  • 文章访问数:  584
  • HTML全文浏览量:  3
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-10

目录

    /

    返回文章
    返回