高级检索

超低氢高韧性无缝药芯焊丝TME711NiSF的研制

刘丽媛, 张智, 杨立军, 孟宪群, 黄世明

刘丽媛, 张智, 杨立军, 孟宪群, 黄世明. 超低氢高韧性无缝药芯焊丝TME711NiSF的研制[J]. 焊接学报, 2015, 36(12): 109-112.
引用本文: 刘丽媛, 张智, 杨立军, 孟宪群, 黄世明. 超低氢高韧性无缝药芯焊丝TME711NiSF的研制[J]. 焊接学报, 2015, 36(12): 109-112.
LIU Liyuan, ZHANG Zhi, YANG Lijun, MENG Xianqun, HUANG Shiming. Development of TME711NiSF seamless flux cored wire with super low hydrogen and high toughness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 109-112.
Citation: LIU Liyuan, ZHANG Zhi, YANG Lijun, MENG Xianqun, HUANG Shiming. Development of TME711NiSF seamless flux cored wire with super low hydrogen and high toughness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 109-112.

超低氢高韧性无缝药芯焊丝TME711NiSF的研制

Development of TME711NiSF seamless flux cored wire with super low hydrogen and high toughness

  • 摘要: 通过选择钛碱性渣系和Mn-Si-Ni-Ti-B合金系,在德国进口无缝药芯焊丝生产线上,制成了一种超低氢高韧性的无缝药芯焊丝TME711NiSF. 其焊接工艺性能和力学性能优良,对焊接热输入具有良好的适应性. 为探讨熔敷金属的韧化机理,对配方中的脱氧剂和合金剂含量进行了优化设计. 结果表明,Mn和Si元素含量居于优化水平时,焊缝组织主要是均匀细小的针状铁素体,这种组织的塑性和低温韧性高,熔敷金属在温度-40 ℃冲击吸收功可达到154 J. 该无缝药芯焊丝熔敷金属的扩散氢含量为2.4 mL/100 g,达到了超低氢水平,适用于船舶、桥梁、海洋工程等重要结构的焊接.
    Abstract: By choosing Ti-based alkaline slag and Mn-Ni-Si-Ti-B alloy system, a kind of seamless flux cored wire named TME711NiSF with super low hydrogen and high toughness was developed on the seamless flux cored wire production line imported from Germany. The seamless flux cored wire has excellent welding technology, mechanical properties and better adaptability to heat input. In order to investigate the toughening mechanism of deposited metal, the contents of deoxidizer and alloying agents in the formulation were optimized. The results show that when the contents of Mn, Si were at the optimized levels, the microstructure was mainly composed of uniform and fine acicular ferrite with good ductility and toughness. The -40 ℃ impact absorbed energy of deposited metal can reach up to 154 J. The diffusible hydrogen content in deposited metal reached the super low hydrogen level with 2.4ml/100 g. It can be applied in welding important steel structures of ships, bridges and marine engineering, etc.
  • [1] 郑伊洛. 焊材如何适应海洋工程的发展[J]. 金属加工(热加工), 2009(20): 11-12. Zheng Yiluo. How to adapt to the development of marine engineering for welding materials[J]. Metal Working, 2009(20): 11-12.
    [2] 尹士科, 卢军华. 含氧量对低合金钢焊缝组织和韧性的影响[J]. 焊接, 2013(6): 10-15. Yin Shike, Lu Junhua. Effect of oxygen content on the weld microstructures and toughness of low alloy steel[J]. Welding & Joining, 2013(6): 10-15.
    [3] 张 敏, 吕金波, 王 超, 等. 一种X100管线钢埋弧焊丝的研究与开发[J]. 焊接学报, 2011, 32(1): 1-4. Zhang Min, Lü Jinbo, Wang Chao, et al. Research and development of a new submerged arc welding wire for X100 pipeline steel[J]. Transactions of the China Welding Institution, 2011, 32(1): 1-4.
    [4] 尹士科, 李凤辉. 高强度焊缝金属韧化及钛-硼对组织的影响[J]. 机械制造文摘-焊接分册, 2012(2): 25-29. Yin Shike, Li Fenghui. Toughness of high strength weld and effect of Ti-B on the weld microstructures[J]. Jixie Zhizao Wenzhai (Hanjie Fence), 2012(2): 25-29.
计量
  • 文章访问数:  616
  • HTML全文浏览量:  4
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-09

目录

    /

    返回文章
    返回